Developing a large language model for oil- and gas-related rock mechanics: Progress and challenges

石油工程 地质学 化石燃料 岩石力学 工程类 岩土工程 废物管理
作者
Botao Lin,Yan Jin,Qianwen Cao,Han Meng,Huiwen Pang,Shiming Wei
出处
期刊:Natural Gas Industry B [Elsevier]
卷期号:12 (2): 110-122
标识
DOI:10.1016/j.ngib.2025.03.007
摘要

In recent years, large language models (LLMs) have demonstrated immense potential in practical applications to enhance work efficiency and decision-making capabilities. However, specialized LLMs in the oil and gas engineering area are rarely developed. To aid in exploring and developing deep and ultra-deep unconventional reservoirs, there is a call for a personalized LLM on oil- and gas-related rock mechanics, which may handle complex professional data and make intelligent predictions and decisions. To that end, herein, we overview general and industry-specific LLMs. Then, a systematic workflow is proposed for building this domain-specific LLM for oil and gas engineering, including data collection and processing, model construction and training, model validation, and implementation in the specific domain. Moreover, three application scenarios are investigated: knowledge extraction from textural resources, field operation with multidisciplinary integration, and intelligent decision assistance. Finally, several challenges in developing this domain-specific LLM are highlighted. Our key findings are that geological surveys, laboratory experiments, field tests, and numerical simulations form the four original sources of rock mechanics data. Those data must flow through collection, storage, processing, and governance before being fed into LLM training. This domain-specific LLM can be trained by fine-tuning a general open-source LLM with professional data and constraints such as rock mechanics datasets and principles. The LLM can then follow the commonly used training and validation processes before being implemented in the oil and gas field. However, there are three primary challenges in building this domain-specific LLM: data standardization, data security and access, and striking a compromise between physics and data when building the model structure. Some of these challenges are administrative rather than technical, and overcoming those requires close collaboration between the different interested parties and various professional practitioners.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
莫默完成签到,获得积分10
刚刚
Ventus发布了新的文献求助10
刚刚
刚刚
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
Scss完成签到,获得积分10
2秒前
唐唐发布了新的文献求助10
3秒前
谦让的牛排完成签到 ,获得积分10
3秒前
踢踢踢踢踢死你完成签到,获得积分10
4秒前
4秒前
Owen应助小丸子采纳,获得10
4秒前
5秒前
5秒前
Akim应助犹豫的雯采纳,获得30
6秒前
7秒前
7秒前
8秒前
8秒前
yyy完成签到,获得积分10
8秒前
危莉关注了科研通微信公众号
10秒前
11秒前
可爱的函函应助zHu1采纳,获得10
11秒前
LioXH完成签到,获得积分10
11秒前
11秒前
Swagger完成签到,获得积分10
11秒前
阿良发布了新的文献求助10
12秒前
12秒前
ninghan发布了新的文献求助10
12秒前
天天快乐应助龙思甜采纳,获得10
13秒前
坦率笑珊发布了新的文献求助10
14秒前
俏皮的鸽子完成签到,获得积分10
14秒前
海海完成签到,获得积分10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5397228
求助须知:如何正确求助?哪些是违规求助? 4517421
关于积分的说明 14063983
捐赠科研通 4429352
什么是DOI,文献DOI怎么找? 2432332
邀请新用户注册赠送积分活动 1424830
关于科研通互助平台的介绍 1403865