Unified Feature Selection Approach for Complex Data Based on Fuzzy β-Covering Reduction via Information Granulation

计算机科学 特征选择 数据挖掘 还原(数学) 人工智能 造粒 选择(遗传算法) 模糊逻辑 特征(语言学) 模式识别(心理学) 数学 工程类 语言学 哲学 几何学 岩土工程
作者
Xiongtao Zou,Jianhua Dai
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2025.3558626
摘要

Feature selection, as an important step of data analysis, is widely used in the fields of data mining, machine learning, and artificial intelligence. It can not only effectively alleviate the curse of dimensionality and improve model performance but also enhance model interpretability. In the real world, data is usually complex such as different feature types, the presence of missing values, and so on. However, most existing feature selection approaches are only capable of handling data with a single feature type. To address the issue of feature selection under the environment of complex data, this article proposes a unified feature selection (UFS) approach for complex data based on fuzzy $\beta $ -covering reduction via information granulation. To begin with, several monotonic uncertainty measures for fuzzy $\beta $ -covering are constructed from the viewpoints of algebra and information theory. Based on the proposed measures, two forward heuristic algorithms are designed for fuzzy $\beta $ -covering reduction. Meanwhile, the complex data with multiple features is represented by fuzzy $\beta $ -covering via information granulation. On this basis, a UFS approach is put forward for complex data. Finally, the effectiveness and superiority of the proposed approach are verified through a series of experiments compared with 12 state-of-the-art feature selection approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陌上尘发布了新的文献求助10
刚刚
韩麒嘉发布了新的文献求助20
1秒前
2秒前
科研通AI2S应助TH采纳,获得10
2秒前
纪震宇发布了新的文献求助10
5秒前
科研搬运工完成签到,获得积分10
5秒前
自然白安完成签到,获得积分10
6秒前
6秒前
共享精神应助junzheng采纳,获得10
6秒前
暴躁的胡萝卜完成签到,获得积分10
7秒前
7秒前
8秒前
AARON完成签到,获得积分10
9秒前
淡淡的怜晴完成签到,获得积分10
9秒前
9秒前
zxzx完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
樊舒豪发布了新的文献求助10
11秒前
yangz发布了新的文献求助10
13秒前
科研通AI5应助无奈的石头采纳,获得10
13秒前
14秒前
完美世界应助愉快尔烟采纳,获得10
14秒前
15秒前
蒲月初七完成签到 ,获得积分10
15秒前
流苏完成签到,获得积分10
16秒前
Keily发布了新的文献求助10
16秒前
隐形曼青应助踏实志泽采纳,获得10
16秒前
空山新雨完成签到 ,获得积分10
16秒前
华仔应助冉冉采纳,获得30
17秒前
17秒前
Owen应助泡泡糖采纳,获得10
18秒前
玉玉发布了新的文献求助10
20秒前
zho应助Rita采纳,获得10
21秒前
Catalysis123发布了新的文献求助10
21秒前
顾矜应助淡然的落雁采纳,获得10
22秒前
qaplay完成签到 ,获得积分0
24秒前
24秒前
25秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818417
求助须知:如何正确求助?哪些是违规求助? 3361563
关于积分的说明 10413396
捐赠科研通 3079823
什么是DOI,文献DOI怎么找? 1693118
邀请新用户注册赠送积分活动 814546
科研通“疑难数据库(出版商)”最低求助积分说明 768209