MIONet: Learning Multiple-Input Operators via Tensor Product

数学 张量积 人工神经网络 操作员(生物学) 算符理论 函数逼近 近似性质 巴拿赫空间 功能(生物学) 傅里叶积分算子 纯数学 应用数学 计算机科学 离散数学 人工智能 生物 转录因子 基因 进化生物学 生物化学 抑制因子 化学
作者
Pengzhan Jin,Shuai Meng,Lu Lu
出处
期刊:SIAM Journal on Scientific Computing [Society for Industrial and Applied Mathematics]
卷期号:44 (6): A3490-A3514 被引量:86
标识
DOI:10.1137/22m1477751
摘要

As an emerging paradigm in scientific machine learning, neural operators aim to learn operators, via neural networks, that map between infinite-dimensional function spaces. Several neural operators have been recently developed. However, all the existing neural operators are only designed to learn operators defined on a single Banach space; i.e., the input of the operator is a single function. Here, for the first time, we study the operator regression via neural networks for multiple-input operators defined on the product of Banach spaces. We first prove a universal approximation theorem of continuous multiple-input operators. We also provide a detailed theoretical analysis including the approximation error, which provides guidance for the design of the network architecture. Based on our theory and a low-rank approximation, we propose a novel neural operator, MIONet, to learn multiple-input operators. MIONet consists of several branch nets for encoding the input functions and a trunk net for encoding the domain of the output function. We demonstrate that MIONet can learn solution operators involving systems governed by ordinary and partial differential equations. In our computational examples, we also show that we can endow MIONet with prior knowledge of the underlying system, such as linearity and periodicity, to further improve accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷静完成签到,获得积分10
刚刚
狂野世立发布了新的文献求助10
刚刚
1秒前
2秒前
Xx发布了新的文献求助20
2秒前
QQ酱完成签到,获得积分20
2秒前
2秒前
卓向梦发布了新的文献求助10
3秒前
ClaudiaY0发布了新的文献求助10
4秒前
4秒前
善学以致用应助demo1采纳,获得10
4秒前
英俊的铭应助一样不一样采纳,获得10
5秒前
bcc完成签到,获得积分10
6秒前
望除完成签到,获得积分10
6秒前
萨柏斯塔完成签到,获得积分10
6秒前
jiujiu发布了新的文献求助10
7秒前
wanci应助等待映安采纳,获得10
7秒前
卓向梦完成签到,获得积分10
8秒前
李健应助现代宛丝采纳,获得10
9秒前
9秒前
9秒前
qz发布了新的文献求助10
9秒前
王庆伟完成签到,获得积分10
10秒前
眼睛大盼兰完成签到 ,获得积分10
11秒前
13秒前
pp发布了新的文献求助20
13秒前
霍小美完成签到,获得积分10
13秒前
14秒前
sunsuan完成签到,获得积分10
14秒前
FashionBoy应助qsy采纳,获得10
15秒前
anna1992发布了新的文献求助10
15秒前
16秒前
sasa发布了新的文献求助10
17秒前
桐桐应助下雨天下雨了采纳,获得30
17秒前
17秒前
JamesPei应助扶石采纳,获得10
17秒前
真不错完成签到,获得积分10
18秒前
yls完成签到,获得积分10
18秒前
feng发布了新的文献求助10
19秒前
LR完成签到,获得积分20
19秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791491
求助须知:如何正确求助?哪些是违规求助? 3335911
关于积分的说明 10277959
捐赠科研通 3052606
什么是DOI,文献DOI怎么找? 1675161
邀请新用户注册赠送积分活动 803188
科研通“疑难数据库(出版商)”最低求助积分说明 761111