Research on precise phenotype identification and growth prediction of lettuce based on deep learning

鉴定(生物学) 精准农业 性状 计算机科学 农业 预测建模 表型 机器学习 深度学习 人工智能 生物技术 农业工程 生物 遗传学 生态学 工程类 基因
作者
Haiye Yu,Dong Mo,Ruohan Zhao,Lei Zhang,Yuanyuan Sui
出处
期刊:Environmental Research [Elsevier]
卷期号:252 (Pt 1): 118845-118845 被引量:11
标识
DOI:10.1016/j.envres.2024.118845
摘要

In recent years, precision agriculture, driven by scientific monitoring, precise management, and efficient use of agricultural resources, has become the direction for future agricultural development. The precise identification and assessment of phenotypes, which serve as external representations of a crop's growth, development, and genetic characteristics, are crucial for the realization of precision agriculture. Applications surrounding phenotypic indices also provide significant technical support for optimizing crop cultivation management and advancing smart agriculture, contributing to the efficient and high-quality development of precision agriculture.This paper focuses on lettuce and employs common nutritional stress conditions during growth as experimental settings. By collecting RGB images throughout the lettuce's complete growth cycle, we developed a deep learning-based computational model to tackle key issues in the lettuce's growth and precisely identify and assess phenotypic indices. We discovered that some phenotypic indices, including custom ones defined in this study, are representative of the lettuce's growth status. By dynamically monitoring the changes in phenotypic traits during growth, we quantitatively analyzed the accumulation and evolution of phenotypic indices across different growth stages. On this basis, a predictive model for lettuce growth and development was trained.The model incorporates MSE, SSIM, and perceptual loss, significantly enhancing the predictive accuracy of the lettuce growth images and phenotypic indices. The model trained with the reconstructed loss function outperforms the original model, with the SSIM and PSNR improving by 1.33% and 10.32%, respectively. The model also demonstrates high accuracy in predicting lettuce phenotypic indices, with an average error less than 0.55% for geometric indices and less than 1.7% for color and texture indices. Ultimately, it achieves intelligent monitoring and management throughout the lettuce's life cycle, providing technical support for high-quality and efficient lettuce production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
深情安青应助萝卜干采纳,获得10
刚刚
Ava应助liutong采纳,获得10
刚刚
空勒发布了新的文献求助10
刚刚
wanci应助Fan采纳,获得10
1秒前
1秒前
1秒前
小马甲应助zz采纳,获得10
1秒前
科研通AI6应助rainbow采纳,获得10
1秒前
十月发布了新的文献求助10
2秒前
杨昕发布了新的文献求助10
2秒前
无花果应助ZTT采纳,获得10
3秒前
5秒前
QIUQIU完成签到,获得积分10
5秒前
如意艳血完成签到 ,获得积分10
5秒前
pluto应助大只鱼采纳,获得10
5秒前
5秒前
无极微光应助酷炫小馒头采纳,获得20
5秒前
Apple完成签到,获得积分10
6秒前
zhanglh123完成签到,获得积分10
7秒前
王震完成签到,获得积分10
7秒前
你为什么不学习完成签到 ,获得积分10
8秒前
Richard_Li发布了新的文献求助10
8秒前
8秒前
菜菜完成签到,获得积分10
10秒前
10秒前
沉静的万天完成签到 ,获得积分10
11秒前
CodeCraft应助gaoyalin采纳,获得10
11秒前
RC_Wang发布了新的文献求助10
11秒前
11秒前
C14H10发布了新的文献求助10
12秒前
ZTT完成签到,获得积分10
13秒前
妮妮发布了新的文献求助10
14秒前
14秒前
莹莹完成签到 ,获得积分10
16秒前
16秒前
朱欣宇完成签到,获得积分10
16秒前
希望天下0贩的0应助Precious采纳,获得10
17秒前
cincrady完成签到,获得积分10
18秒前
打打应助爱你一万年采纳,获得10
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5496863
求助须知:如何正确求助?哪些是违规求助? 4594479
关于积分的说明 14445063
捐赠科研通 4527042
什么是DOI,文献DOI怎么找? 2480630
邀请新用户注册赠送积分活动 1465088
关于科研通互助平台的介绍 1437844