Research on precise phenotype identification and growth prediction of lettuce based on deep learning

鉴定(生物学) 精准农业 性状 计算机科学 农业 预测建模 表型 机器学习 深度学习 人工智能 生物技术 生物 遗传学 生态学 基因
作者
Huaqing Yu,Ming Dong,Ruohan Zhao,Lei Zhang,Yuanyuan Sui
出处
期刊:Environmental Research [Elsevier BV]
卷期号:252: 118845-118845
标识
DOI:10.1016/j.envres.2024.118845
摘要

In recent years, precision agriculture, driven by scientific monitoring, precise management, and efficient use of agricultural resources, has become the direction for future agricultural development. The precise identification and assessment of phenotypes, which serve as external representations of a crop's growth, development, and genetic characteristics, are crucial for the realization of precision agriculture. Applications surrounding phenotypic indices also provide significant technical support for optimizing crop cultivation management and advancing smart agriculture, contributing to the efficient and high-quality development of precision agriculture.This paper focuses on lettuce and employs common nutritional stress conditions during growth as experimental settings. By collecting RGB images throughout the lettuce's complete growth cycle, we developed a deep learning-based computational model to tackle key issues in the lettuce's growth and precisely identify and assess phenotypic indices. We discovered that some phenotypic indices, including custom ones defined in this study, are representative of the lettuce's growth status. By dynamically monitoring the changes in phenotypic traits during growth, we quantitatively analyzed the accumulation and evolution of phenotypic indices across different growth stages. On this basis, a predictive model for lettuce growth and development was trained.The model incorporates MSE, SSIM, and perceptual loss, significantly enhancing the predictive accuracy of the lettuce growth images and phenotypic indices. The model trained with the reconstructed loss function outperforms the original model, with the SSIM and PSNR improving by 1.33% and 10.32%, respectively. The model also demonstrates high accuracy in predicting lettuce phenotypic indices, with an average error less than 0.55% for geometric indices and less than 1.7% for color and texture indices. Ultimately, it achieves intelligent monitoring and management throughout the lettuce's life cycle, providing technical support for high-quality and efficient lettuce production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iNk应助一事无成的研一采纳,获得20
刚刚
许甜甜鸭应助科研通管家采纳,获得10
刚刚
彭于晏应助yuxin采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
善学以致用应助健壮道天采纳,获得10
刚刚
小蘑菇应助科研通管家采纳,获得10
刚刚
阳光孤菱发布了新的文献求助10
刚刚
Hello应助科研通管家采纳,获得10
刚刚
小马甲应助科研通管家采纳,获得10
刚刚
所所应助科研通管家采纳,获得10
刚刚
大个应助科研通管家采纳,获得10
1秒前
snowy_owl发布了新的文献求助10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
路人应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
1秒前
Ava应助科研通管家采纳,获得30
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
1秒前
强强发布了新的文献求助10
2秒前
2秒前
科研通AI5应助受伤飞鸟采纳,获得30
2秒前
3秒前
lbw完成签到 ,获得积分10
3秒前
木木发布了新的文献求助10
3秒前
乐观小之应助皮皮采纳,获得10
3秒前
3秒前
科研通AI5应助zxf采纳,获得10
4秒前
奋斗的暖阳完成签到,获得积分10
4秒前
钩子89完成签到,获得积分10
4秒前
4秒前
动感的帅完成签到,获得积分10
4秒前
Zetlynn发布了新的文献求助10
4秒前
wyq完成签到 ,获得积分10
4秒前
小九完成签到,获得积分10
5秒前
韦涔发布了新的文献求助10
6秒前
6秒前
忧郁觅柔发布了新的文献求助10
6秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838043
求助须知:如何正确求助?哪些是违规求助? 3380287
关于积分的说明 10513442
捐赠科研通 3099903
什么是DOI,文献DOI怎么找? 1707264
邀请新用户注册赠送积分活动 821558
科研通“疑难数据库(出版商)”最低求助积分说明 772750