Battery degradation diagnosis with field data, impedance-based modeling and artificial intelligence

材料科学 电池(电) 领域(数学) 降级(电信) 电阻抗 人工智能 电气工程 计算机科学 工程类 热力学 数学 物理 功率(物理) 纯数学
作者
Weihan Li,Jue Chen,Katharina Lilith Quade,Daniel Luder,Jingyu Gong,Dirk Uwe Sauer
出处
期刊:Energy Storage Materials [Elsevier BV]
卷期号:53: 391-403 被引量:60
标识
DOI:10.1016/j.ensm.2022.08.021
摘要

• Electrode-level degradation diagnosis approach for lithium-ion batteries • Hybrid model integrates the battery impedance and OCV-reconstruction • Accurate parameter identification with artificial intelligence and field data • Accurate estimation of capacity fade, power fade, and degradation modes • Robustness analysis and data requirements analysis for cloud applications By collecting battery data from the field and building up the battery digital twin in the cloud, the degradation of batteries can be monitored online on the electrode level and the information regarding the degradation modes can be extracted from the data. Here, we present a degradation diagnosis framework for lithium-ion batteries by integrating field data, impedance-based modeling, and artificial intelligence, revolutionizing the degradation identification with accurate and robust estimation of both capacity and power fade together with degradation mode analysis. By integrating an impedance-based model and an open-circuit voltage reconstruction model, the hybrid model consists of parameters representing the change of impedance in a wide frequency domain and the change of open-circuit voltage during degradation. Based on the field data with low and high dynamics, the data-driven parameter identification method using a multi-step cuckoo search algorithm considering parameter sensitivity differences shows high accuracy and robustness in aging parameter estimation and degradation mode identification even under sensor noise. Furthermore, the data requirement for the battery digital twin in the sense of sampling rate was investigated considering degradation identification accuracy, computational cost, and data storage cost. This work highlights the opportunity in online electrode-level degradation diagnosis in the field through battery modeling and artificial intelligence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
等于几都行完成签到 ,获得积分10
刚刚
1秒前
秋枫忆完成签到,获得积分10
1秒前
Bella完成签到 ,获得积分10
1秒前
无花果应助可乐味橘子采纳,获得10
3秒前
林大侠完成签到,获得积分10
3秒前
顾矜应助神勇的砖头采纳,获得10
6秒前
A溶大美噶完成签到,获得积分10
7秒前
小茄子爷爷应助liu采纳,获得30
7秒前
9秒前
向雅完成签到,获得积分10
12秒前
Maglev发布了新的文献求助30
14秒前
15秒前
舒服的灵安完成签到 ,获得积分10
15秒前
月亮之下完成签到 ,获得积分10
17秒前
RRR发布了新的文献求助10
19秒前
19秒前
Wonder完成签到,获得积分10
19秒前
M_liya完成签到 ,获得积分10
19秒前
Hello应助可乐味橘子采纳,获得10
21秒前
solo4bird完成签到,获得积分10
22秒前
笨笨芯发布了新的文献求助50
22秒前
哈哈哈完成签到,获得积分10
22秒前
小梦完成签到,获得积分10
23秒前
keyan完成签到,获得积分10
24秒前
Xltox完成签到,获得积分10
25秒前
知行完成签到,获得积分10
26秒前
26秒前
火火火木完成签到 ,获得积分10
27秒前
所所应助笨笨芯采纳,获得10
29秒前
青菜完成签到,获得积分10
30秒前
秀丽的小懒虫完成签到,获得积分10
31秒前
32秒前
logan完成签到,获得积分10
32秒前
zss完成签到 ,获得积分10
34秒前
小橘子完成签到 ,获得积分10
35秒前
杨。。完成签到 ,获得积分10
35秒前
小张在进步完成签到,获得积分10
38秒前
38秒前
研友_La17wL完成签到,获得积分10
38秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843340
求助须知:如何正确求助?哪些是违规求助? 3385634
关于积分的说明 10541427
捐赠科研通 3106276
什么是DOI,文献DOI怎么找? 1710911
邀请新用户注册赠送积分活动 823851
科研通“疑难数据库(出版商)”最低求助积分说明 774313