计算机科学
脑电图
人工智能
代表(政治)
图形
模式识别(心理学)
外部数据表示
图论
理论计算机科学
心理学
神经科学
数学
政治学
政治
组合数学
法学
作者
Hao Tang,Songyun Xie,Xinzhou Xie,Yujie Cui,Bohan Li,Dalu Zheng,Yu Hao,Xiangming Wang,Yiye Jiang,Zhongyu Tian
标识
DOI:10.1109/jbhi.2024.3415163
摘要
Graph neural networks (GNNs) have demonstrated efficient processing of graph-structured data, making them a promising method for electroencephalogram (EEG) emotion recognition. However, due to dynamic functional connectivity and nonlinear relationships between brain regions, representing EEG as graph data remains a great challenge. To solve this problem, we proposed a multi-domain based graph representation learning (MD
科研通智能强力驱动
Strongly Powered by AbleSci AI