Hierarchical Machine Learning of Low-Resolution Coarse-Grained Free Energy Potentials

聚类分析 层次聚类 粒度 计算机科学 亥姆霍兹自由能 无监督学习 沃罗诺图 算法 人工智能 数学 物理 量子力学 几何学 操作系统
作者
Sergei Izvekov,Betsy M. Rice
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:19 (14): 4436-4450 被引量:7
标识
DOI:10.1021/acs.jctc.3c00128
摘要

A force-matching-based method for supervised machine learning (ML) of coarse-grained (CG) free energy (FE) potentials─known as multiscale coarse-graining via force-matching (MSCG/FM)─is an efficient method to develop microscopically informed CG models that are thermodynamically and statistically equivalent to the reference microscopic models. For low-resolution models, when the coarse-graining is at supramolecular scales, objective-oriented clustering of nonbonded particles is required and the reduced description becomes a function of the clustering algorithm. In the present work, we explore the dependence of the ML of the CG Helmholtz FE potential on the clustering algorithm. We consider coarse-graining based on partitional (k-means, leading to Voronoi diagram) and hierarchical agglomerative (bottom-up) clustering algorithms common in unsupervised ML and develop theory connecting the MSCG/FM learned CG Helmholtz potential and the clustering statistics. By combining the agglomerative clustering and the MSCG/FM learning in a recursive manner, we propose an efficient ML methodology to develop the fine-to-low resolution hierarchies of the CG models. The methodology does not suffer from degrading accuracy or increased computational cost to construct larger hierarchies and as such does not impose an upper size limitation of the CG particles resulting from the extended hierarchies. The utility of the methodology is demonstrated by obtaining the bottom-up agglomerative hierarchy for liquid nitromethane from all-atom molecular dynamics (MD) simulations. For agglomerative hierarchies, we prove the existence of renormalization group transformations that indicate self-similarity and allow for learning the low-resolution MSCG/FM potentials at low computational cost by rescaling and renormalizing the certain finer-resolution members of the hierarchy. The hierarchies of the CG models can be used to carry out simulations under constant-pressure conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
浮游应助榴莲柿子茶采纳,获得10
2秒前
2秒前
2秒前
乐乐应助binghe411采纳,获得10
2秒前
lin完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
4秒前
4秒前
5秒前
李富贵儿~发布了新的文献求助10
5秒前
CipherSage应助宇宙超人007008采纳,获得10
5秒前
6秒前
6秒前
6秒前
7秒前
牛马发布了新的文献求助10
7秒前
8秒前
he发布了新的文献求助10
8秒前
隐形曼青应助神奇大药丸采纳,获得10
9秒前
10秒前
阿洁完成签到,获得积分10
10秒前
XIAOGAO发布了新的文献求助10
11秒前
Daytoys完成签到,获得积分20
11秒前
11秒前
12秒前
科研小民工完成签到,获得积分10
12秒前
12秒前
科研蛀虫发布了新的文献求助10
12秒前
13秒前
nnnni发布了新的文献求助10
13秒前
Hello应助怡然缘分采纳,获得10
13秒前
今后应助顺利静竹采纳,获得10
14秒前
布丁完成签到,获得积分10
14秒前
14秒前
碳储1完成签到,获得积分10
14秒前
Dsunflower完成签到 ,获得积分10
15秒前
bella发布了新的文献求助30
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 510
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4690190
求助须知:如何正确求助?哪些是违规求助? 4062316
关于积分的说明 12560350
捐赠科研通 3759943
什么是DOI,文献DOI怎么找? 2076535
邀请新用户注册赠送积分活动 1105263
科研通“疑难数据库(出版商)”最低求助积分说明 984007