REFINE2: a simplified simulation tool to help epidemiologists evaluate the suitability and sensitivity of effect estimation within user-specified data

虚假关系 协变量 计算机科学 估计员 背景(考古学) 机器学习 残余物 推论 对比度(视觉) 置信区间 样本量测定 数据挖掘 统计推断 人工智能 统计 算法 数学 生物 古生物学
作者
Xiang Meng,Jonathan Huang
出处
期刊:American Journal of Epidemiology [Oxford University Press]
被引量:1
标识
DOI:10.1093/aje/kwaf195
摘要

Abstract Epidemiologists have access to various methods to reduce bias and improve statistical efficiency in effect estimation, from standard multivariable regression to state-of-the-art doubly-robust efficient estimators paired with highly flexible, data-adaptive algorithms (“machine learning”). However, due to numerous assumptions and trade-offs, epidemiologists face practical difficulties in recognizing which method, if any, may be suitable for their specific data and hypotheses. Importantly, relative advantages are necessarily context-specific (data structure, algorithms, model misspecification), limiting the utility of universal guidance. Evaluating performance through real-data-based simulations is useful but out-of-reach for many epidemiologists. We present a user-friendly, offline Shiny app REFINE2 (Realistic Evaluations of Finite sample INference using Efficient Estimators) that enables analysts to input their own data and quickly compare the performance of different algorithms within their data context in estimating a prespecified average treatment effect (ATE). REFINE2 automates plasmode simulation of a plausible target ATE given observed covariates and then examines bias and confidence interval coverage (relative to this target) given user-specified models. We present an extensive case study to illustrate how REFINE2 can be used to guide analyses within epidemiologist’s own data under three typical scenarios: residual confounding; spurious covariates; and mis-specified effect modification. As expected, the apparent best method differed across scenarios and are suboptimal under residual confounding. REFINE2 may help epidemiologists not only chose amongst imperfect models, but also better understand common underappreciated problems, such as finite sample bias using machine learning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鳗鱼依白发布了新的文献求助10
刚刚
1秒前
1秒前
王旭完成签到,获得积分20
2秒前
JamesPei应助朴实以丹采纳,获得10
3秒前
小贝完成签到,获得积分10
3秒前
3秒前
4秒前
悦耳垣发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
Galen发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
星辰大海应助jcc采纳,获得10
5秒前
秦汉的抉择完成签到,获得积分10
6秒前
林中灰狼发布了新的文献求助10
6秒前
瑾进完成签到 ,获得积分10
8秒前
8秒前
8秒前
hhh完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
Hello应助shirelylee采纳,获得10
9秒前
鳗鱼依白完成签到,获得积分20
11秒前
11秒前
哈哈哈关注了科研通微信公众号
12秒前
哈哈哈关注了科研通微信公众号
12秒前
寒水完成签到 ,获得积分10
13秒前
小北发布了新的文献求助10
13秒前
13秒前
weiyu_u发布了新的文献求助30
14秒前
14秒前
SUNstp完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
科研顺利发布了新的文献求助10
15秒前
hhh发布了新的文献求助10
15秒前
欧阳半仙完成签到,获得积分10
16秒前
OWEN完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784905
求助须知:如何正确求助?哪些是违规求助? 5684415
关于积分的说明 15465839
捐赠科研通 4913887
什么是DOI,文献DOI怎么找? 2644971
邀请新用户注册赠送积分活动 1592868
关于科研通互助平台的介绍 1547242