Beyond primitive bionic surfaces: Bionic structures coupled surface with superhydrophobicity and programmable directional adhesion

物理 粘附 曲面(拓扑) 纳米技术 仿生学 几何学 材料科学 数学 计算机科学 量子力学 人工智能
作者
Qinlin Wan,Xingjun Hu,Jingyu Wang,Hongda Shi,Wentao Yu,Daqian Wang,Firoz Alam,Yingai Jin,Tianming Yu,Peng Guo,Wei Lan,K. Shi
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (6)
标识
DOI:10.1063/5.0270879
摘要

The Cassie state surface, exemplified by lotus and rice leaves, and the Wenzel state surface, exemplified by rose petals, are both superhydrophobic due to their unique structures. The objective is to expand the primitive wettability function of a single bionic structure by coupling various bionic structures in the corresponding wetting state region on an entire surface. The rice leaf–rose petal structures coupled (RRSC) aluminum surfaces were fabricated by micro-milling. The rice leaf wall substrate forms an air layer in the Cassie state. The Wenzel roughness is controlled by the rose petal crown. The RRSC surface is more hydrophobic than a single bionic surface, and it can also be programmed for adhesion and directional diffusion. An augmentation of up to 0.57° in contact angle and 3.34° in run-off angle per micrometer of rose petal crown width is exhibited. A model for identifying the wetting states on rough surfaces is developed, and the effect of two bionic structures on wetting states is analyzed quantitatively. The rose petal crown is observed to retain the air layer by impeding droplet penetration. By determining the free energy and adhesion work, the superhydrophobicity and programmable adhesion originate from the cooperative interaction and internal competition between two wetting states, respectively. This article presents a new theoretical thermodynamic model for analyzing wetting states, wettability, and adhesion on rough surfaces. The bionic structures coupled strategy is proposed to exceed the primitive wettability of bionic surfaces by coordinating natural surface characteristics in different wetting states.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AXQ完成签到,获得积分10
1秒前
MA完成签到,获得积分10
1秒前
momo应助粗心的智慧采纳,获得10
2秒前
篮孩子发布了新的文献求助10
3秒前
每天帅成两米八完成签到,获得积分10
4秒前
沉默的婴完成签到 ,获得积分10
4秒前
学术蝗虫应助YEEze采纳,获得20
5秒前
耍酷寻双完成签到 ,获得积分10
6秒前
陌路完成签到,获得积分10
6秒前
zzh完成签到 ,获得积分10
7秒前
李文英完成签到,获得积分10
13秒前
smm完成签到 ,获得积分10
13秒前
14秒前
飘逸蘑菇完成签到 ,获得积分10
14秒前
直率无春完成签到,获得积分10
14秒前
15秒前
咸鱼好闲完成签到 ,获得积分10
17秒前
17秒前
老实寒云完成签到 ,获得积分10
18秒前
19秒前
大青山完成签到,获得积分10
20秒前
濮阳映萱发布了新的文献求助10
21秒前
21秒前
白菜完成签到 ,获得积分0
22秒前
22秒前
花海完成签到,获得积分10
23秒前
23秒前
景行行止完成签到,获得积分10
24秒前
mayxmzhang完成签到,获得积分10
24秒前
xiao完成签到 ,获得积分10
25秒前
鲤鱼水池发布了新的文献求助10
26秒前
欣慰薯片发布了新的文献求助10
28秒前
桐桐应助聪慧的微笑采纳,获得10
29秒前
传奇3应助红花铁牛采纳,获得20
29秒前
HQ完成签到,获得积分10
29秒前
www发布了新的文献求助10
30秒前
wakeeeeeee完成签到,获得积分10
30秒前
鲤鱼水池完成签到,获得积分10
31秒前
醉熏的冷风完成签到,获得积分10
31秒前
song完成签到 ,获得积分10
33秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 700
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4131641
求助须知:如何正确求助?哪些是违规求助? 3668383
关于积分的说明 11601548
捐赠科研通 3365792
什么是DOI,文献DOI怎么找? 1849213
邀请新用户注册赠送积分活动 912916
科研通“疑难数据库(出版商)”最低求助积分说明 828355