Beyond primitive bionic surfaces: Bionic structures coupled surface with superhydrophobicity and programmable directional adhesion

物理 粘附 曲面(拓扑) 纳米技术 仿生学 几何学 材料科学 数学 量子力学 人工智能 计算机科学
作者
Qinlin Wan,Xingjun Hu,Jingyu Wang,Hongda Shi,Wentao Yu,Daqian Wang,Firoz Alam,Yingai Jin,Tianming Yu,Peng Guo,Wei Lan,K. Shi
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (6) 被引量:2
标识
DOI:10.1063/5.0270879
摘要

The Cassie state surface, exemplified by lotus and rice leaves, and the Wenzel state surface, exemplified by rose petals, are both superhydrophobic due to their unique structures. The objective is to expand the primitive wettability function of a single bionic structure by coupling various bionic structures in the corresponding wetting state region on an entire surface. The rice leaf–rose petal structures coupled (RRSC) aluminum surfaces were fabricated by micro-milling. The rice leaf wall substrate forms an air layer in the Cassie state. The Wenzel roughness is controlled by the rose petal crown. The RRSC surface is more hydrophobic than a single bionic surface, and it can also be programmed for adhesion and directional diffusion. An augmentation of up to 0.57° in contact angle and 3.34° in run-off angle per micrometer of rose petal crown width is exhibited. A model for identifying the wetting states on rough surfaces is developed, and the effect of two bionic structures on wetting states is analyzed quantitatively. The rose petal crown is observed to retain the air layer by impeding droplet penetration. By determining the free energy and adhesion work, the superhydrophobicity and programmable adhesion originate from the cooperative interaction and internal competition between two wetting states, respectively. This article presents a new theoretical thermodynamic model for analyzing wetting states, wettability, and adhesion on rough surfaces. The bionic structures coupled strategy is proposed to exceed the primitive wettability of bionic surfaces by coordinating natural surface characteristics in different wetting states.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ELITOmiko完成签到,获得积分10
刚刚
科研通AI2S应助Mtt采纳,获得10
刚刚
无辜的从云完成签到,获得积分20
刚刚
dalei001完成签到 ,获得积分10
1秒前
隐形的凡阳完成签到,获得积分10
1秒前
欧皇完成签到,获得积分10
1秒前
yeu103325应助dzh采纳,获得10
2秒前
Ciwei发布了新的文献求助10
2秒前
lili完成签到,获得积分10
2秒前
2秒前
Jasper应助酸奶不吃鱼采纳,获得10
3秒前
3秒前
3秒前
李爱国应助野性的马里奥采纳,获得10
3秒前
干净的夏天完成签到,获得积分10
4秒前
annian发布了新的文献求助10
4秒前
shtnice发布了新的文献求助10
4秒前
酷波er应助欧皇采纳,获得10
4秒前
HT完成签到,获得积分20
4秒前
小刘完成签到,获得积分10
4秒前
6秒前
果实发布了新的文献求助10
6秒前
我是老大应助小王采纳,获得10
6秒前
6秒前
7秒前
7秒前
三白眼发布了新的文献求助10
8秒前
猪四郎发布了新的文献求助10
8秒前
HRB完成签到,获得积分10
9秒前
11秒前
chengwei完成签到,获得积分20
11秒前
OuO发布了新的文献求助10
11秒前
Ciwei完成签到,获得积分10
11秒前
11秒前
12秒前
乐乐应助淡然的夜柳采纳,获得10
12秒前
13秒前
缓慢发卡完成签到,获得积分10
13秒前
14秒前
殷勤的幻丝完成签到,获得积分20
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5473503
求助须知:如何正确求助?哪些是违规求助? 4575665
关于积分的说明 14353545
捐赠科研通 4503157
什么是DOI,文献DOI怎么找? 2467534
邀请新用户注册赠送积分活动 1455373
关于科研通互助平台的介绍 1429357