Integrated machine learning–based RNA sequencing and single-cell analysis reveal RNA methylation regulation patterns in the immune microenvironment of Alzheimer’s disease

RNA甲基化 核糖核酸 甲基化 生物 长非编码RNA 小RNA 非编码RNA DNA甲基化 转录组 癌症研究 计算生物学 基因表达 基因 遗传学 甲基转移酶
作者
Shuguang Wu,Ting Guo,Xingyongpei Zheng,Caihong Gu,Yujie Hu,Xiaohong Gu,Xinyu Zhou
出处
期刊:Neural Regeneration Research [Medknow Publications]
标识
DOI:10.4103/nrr.nrr-d-24-01650
摘要

Abstract Alterations in RNA methylation may affect the initiation and development of Alzheimer’s disease. However, the exact nature of the relationship between RNA methylation and Alzheimer’s disease remains unclear. In this study, RNA methylation levels were analyzed by bulk transcriptomic and single-cell RNA sequencing. The expression levels of RNA methylation regulators were confirmed using molecular biology techniques. Co-expression network analysis was used to identify relevant long non-coding RNAs. Molecular subtypes related to RNA methylation were classified, and variations in clinical characteristics, biological behavior, and immune signatures between subtypes were assessed. Machine learning approaches were applied to identify methylation-associated long noncoding RNAs, which were used to construct a risk model and nomogram for Alzheimer’s disease. Potential therapeutic agents for different risk groups were predicted, and in vitro experiments were conducted to identify key RNA methylation events. Single-cell analysis demonstrated enhanced RNA methylation in patients with Alzheimer’s disease, particularly within T cells, B cells, and NK cells. Quantitative reverse transcription-polymerase chain reaction and western blot confirmed alterations in RNA methylation regulators in neurons treated with amyloid-β oligomers in vitro . This evidence supported the classification of patients with Alzheimer’s disease into heterogeneous subtypes. Specifically, subtype 1 was identified as the immune-active subtype, while subtype 2 was characterized by a metabolic phenotype. Machine learning algorithms identified five significant methylation-associated long non-coding RNAs –LINC01007, MAP4K3-DT, MIR302CHG, VAC14-AS1, and TGFB2-OT1–that accurately predict clinical outcomes for patients with Alzheimer’s disease. These patients were classified into low- and high-risk categories; the latter group displayed higher immune infiltration, upregulated immune regulatory gene expression, and elevated immune scores and responded better to treatment with arachidonic-trifluoroethane. These findings suggest that dysregulated RNA methylation alters the immune microenvironment in Alzheimer’s disease and is closely associated with its progression. This phenomenon provides novel insights into potential therapeutic strategies for Alzheimer’s disease that target RNA methylation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘博虎完成签到,获得积分10
1秒前
nusiew完成签到,获得积分10
3秒前
Perrylin718完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
Hhhhh完成签到 ,获得积分10
10秒前
木子雨完成签到 ,获得积分10
15秒前
智发完成签到,获得积分10
20秒前
CHEN完成签到 ,获得积分0
21秒前
5433完成签到 ,获得积分10
25秒前
幺幺幺完成签到 ,获得积分10
25秒前
海边的曼彻斯特完成签到 ,获得积分10
25秒前
强哥完成签到,获得积分10
26秒前
量子星尘发布了新的文献求助10
27秒前
falling_learning完成签到 ,获得积分10
27秒前
啊离完成签到 ,获得积分10
31秒前
songyu完成签到,获得积分10
44秒前
量子星尘发布了新的文献求助10
46秒前
耍酷的指甲油完成签到 ,获得积分10
47秒前
阔达的背包完成签到 ,获得积分10
48秒前
ycd完成签到,获得积分10
50秒前
Fury完成签到 ,获得积分10
52秒前
瘦瘦的枫叶完成签到 ,获得积分10
53秒前
alixy完成签到,获得积分10
54秒前
酷波er应助风信子deon01采纳,获得10
56秒前
onmyway完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
偷得浮生半日闲完成签到,获得积分10
1分钟前
caopeili完成签到 ,获得积分10
1分钟前
1分钟前
小药童应助科研通管家采纳,获得10
1分钟前
hyxu678应助科研通管家采纳,获得50
1分钟前
小药童应助科研通管家采纳,获得10
1分钟前
专注德地发布了新的文献求助10
1分钟前
温婉的香氛完成签到 ,获得积分10
1分钟前
153266916完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Kelsey完成签到 ,获得积分10
1分钟前
砚木完成签到 ,获得积分10
1分钟前
浮游应助xyzlancet采纳,获得10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628794
求助须知:如何正确求助?哪些是违规求助? 4718478
关于积分的说明 14964964
捐赠科研通 4786675
什么是DOI,文献DOI怎么找? 2555959
邀请新用户注册赠送积分活动 1517113
关于科研通互助平台的介绍 1477850