PIE—Partially Interpretable Estimators with Refinement

估计员 计算机科学 数学 算法 统计
作者
Tong Wang,Jingyi Yang,Y. G. Li,Boxiang Wang
出处
期刊:Informs Journal on Computing
标识
DOI:10.1287/ijoc.2022.0098
摘要

We propose a new form of predictive models, Partially Interpretable Estimators (PIE), which jointly train an interpretable model and a black-box model to achieve partial model transparency while maintaining high predictive performance. Our design is motivated by prior research showing that interpretability does not require exposing all model details. Therefore, our objective is to explain the main components of the prediction, withholding complicated calculations that may not be necessary for users. PIE is designed to attribute a prediction to the contribution from individual features via a sparse linear additive model to achieve interpretability while complementing the prediction with a black-box model to boost the predictive performance. As such, the linear additive model captures the primary feature contributions, while the black-box component augments PIE’s predictive power by capturing the “nuances” of feature interactions as a refinement. Moreover, we include a sparsity constraint, allowing users to adjust the model to meet domain-specific needs of interpretability. To optimize predictive performance, we propose a coordinated training algorithm that jointly trains the two components of PIE. Experimental results show that PIE achieves accuracy comparable to state-of-the-art black-box models, with human assessments confirming that its interpretability is nearly equivalent to linear models. History: Accepted by Ram Ramesh, Data Science & Machine Learning. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2022.0098 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2022.0098 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈队长2号完成签到,获得积分10
刚刚
JamesPei应助蓝荆采纳,获得10
刚刚
dolabmu完成签到 ,获得积分10
1秒前
Biohacking完成签到,获得积分10
2秒前
2秒前
bawei完成签到,获得积分20
2秒前
淡淡的新之完成签到,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
默11完成签到 ,获得积分10
2秒前
凶狠的映易完成签到 ,获得积分10
2秒前
hunajx发布了新的文献求助10
3秒前
小五完成签到,获得积分10
4秒前
六水居士完成签到,获得积分10
4秒前
专注之双完成签到,获得积分10
4秒前
6秒前
Dean应助Marcie采纳,获得50
6秒前
莫三颜发布了新的文献求助10
7秒前
铜锣烧完成签到 ,获得积分10
8秒前
小二郎应助单薄不惜采纳,获得10
9秒前
9秒前
研友_LMBAXn完成签到,获得积分10
10秒前
天罡发布了新的文献求助10
10秒前
10秒前
11秒前
hunajx完成签到,获得积分10
11秒前
duckspy完成签到 ,获得积分10
11秒前
小七完成签到,获得积分10
11秒前
xhuryts完成签到,获得积分10
11秒前
二柱子完成签到,获得积分10
11秒前
1661321476完成签到,获得积分10
12秒前
磨玉完成签到 ,获得积分10
12秒前
12秒前
KJ完成签到,获得积分10
12秒前
小李完成签到,获得积分20
13秒前
蓝荆发布了新的文献求助10
13秒前
参上完成签到,获得积分10
13秒前
ws_WS_完成签到 ,获得积分10
14秒前
大模型应助快来吃甜瓜采纳,获得10
15秒前
mlle完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Reflections of female probation practitioners: navigating the challenges of working with male offenders 500
Probation staff reflective practice: can it impact on outcomes for clients with personality difficulties? 500
ESDU TM 218 An example of air data pressure correction with a dependency on engine power settings 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5033197
求助须知:如何正确求助?哪些是违规求助? 4267126
关于积分的说明 13300445
捐赠科研通 4077128
什么是DOI,文献DOI怎么找? 2230057
邀请新用户注册赠送积分活动 1238471
关于科研通互助平台的介绍 1164086