Performance of different models in iron ore price prediction during the time of commodity price spike

商品 计量经济学 铁矿石 二元分析 线性回归 经济 统计 数学 冶金 财务 材料科学
作者
Yoochan Kim,Apurna Ghosh,Erkan Topal,Ping Chang
出处
期刊:Resources Policy [Elsevier BV]
卷期号:80: 103237-103237 被引量:5
标识
DOI:10.1016/j.resourpol.2022.103237
摘要

Future prediction of commodity price based on available data is very important for mining investors and operators. Commodity prices cointegrate and show Granger causality to and from one another. This research reviewed five different estimation techniques which are Bivariate Non-Linear Regression (BNLR), Multiple Linear Regression (MLR), Multiple Non-Linear Regression (MNLR) as well as logsig and tansig model of Levenberg-Marquardt Artificial Neural Network modelling to simulate the future iron ore price based on 12 other monthly commodity prices and indices including LNG, aluminium, nickel, silver, Australian coal, zinc, gold, oil, tin, copper, lead, and Commodity Price Index (Metals). Six different models were tested in the paper to forecast the iron ore prices from 1 to 6 months over 10 months period. Linear model (purelin) using Levenberg-Marquardt technique was able to exhibit the best forecast result with average accuracy of 5.92% for 1 month ahead, 9.48% for 2 months, 11.21% for 3 months, etc. It is important to highlight that high accuracy is achieved (accuracy under 5% between forecasts and actuals in 40–50% cases) by purelin model for up to 2 months forecast for the period between July 2020 and April 2021. This indicates that prediction of iron ore price for the coming month is possible for up to 2 months period using the purelin model. It can be noted that the period tested was unstable for iron ore prices where rapid surge in iron ore price was observed. Same principle can be applied in the time of next commodity price cycle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得20
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
像风一样应助科研通管家采纳,获得10
1秒前
Azhou应助科研通管家采纳,获得10
1秒前
贰鸟应助科研通管家采纳,获得20
1秒前
贰鸟应助科研通管家采纳,获得20
1秒前
贰鸟应助科研通管家采纳,获得20
1秒前
maodianandme发布了新的文献求助10
2秒前
牢刺发布了新的文献求助10
2秒前
兔葵燕麦完成签到 ,获得积分0
4秒前
LHL发布了新的文献求助10
5秒前
7秒前
虚拟的夜白关注了科研通微信公众号
9秒前
yinyin完成签到 ,获得积分10
10秒前
11秒前
TTT发布了新的文献求助10
13秒前
cxwcn发布了新的文献求助10
16秒前
16秒前
CipherSage应助满当当采纳,获得10
20秒前
dennisysz发布了新的文献求助10
22秒前
28秒前
一只虎子完成签到,获得积分10
31秒前
OMR123完成签到,获得积分10
32秒前
33秒前
满当当发布了新的文献求助10
34秒前
yydidi发布了新的文献求助10
35秒前
36秒前
rcrc111发布了新的文献求助10
38秒前
玄轩发布了新的文献求助10
40秒前
40秒前
科研通AI5应助yydidi采纳,获得30
41秒前
星夜发布了新的文献求助10
42秒前
我一进来就看到常威在打来福完成签到,获得积分10
44秒前
DreamMaker发布了新的文献求助10
44秒前
搞怪的一德完成签到,获得积分10
48秒前
满当当完成签到,获得积分10
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777469
求助须知:如何正确求助?哪些是违规求助? 3322775
关于积分的说明 10211743
捐赠科研通 3038195
什么是DOI,文献DOI怎么找? 1667163
邀请新用户注册赠送积分活动 797990
科研通“疑难数据库(出版商)”最低求助积分说明 758133