Modeling soot formation in flames and reactors: Recent progress and current challenges

烟灰 燃烧 炭黑 热解 碳纤维 甲烷 纳米技术 工艺工程 材料科学 化学 有机化学 工程类 复合数 复合材料 天然橡胶
作者
Murray J. Thomson
出处
期刊:Proceedings of the Combustion Institute [Elsevier BV]
卷期号:39 (1): 805-823 被引量:40
标识
DOI:10.1016/j.proci.2022.07.263
摘要

The study of soot has long been motivated by its adverse impacts on health and the environment. However, this combustion knowledge is also relevant to the production of carbon black and hydrogen via methane pyrolysis which are important commodities. Over the last decade, steady progress has been made in the development of detailed continuum models of soot formation in flames and reactors. Developing more comprehensive models has often been motivated by the need for predicting soot formation over a wider range of conditions (e.g., temperature, pressure, fuels). Measurements with novel experimental techniques have given us new insights into the chemistry, particle dynamics and optical properties of soot particles and even molecules and radicals forming them. Also, multi-scale modeling has enabled us to translate the detailed mechanisms of soot processes based on first principles into computationally efficient but accurate continuum models of soot formation in flames and reactors. However, important questions remain including (1) what is the mechanism of soot inception and surface growth, (2) which gas-phase species are involved in soot inception and surface growth (3) how surface growth and oxidation are affected by soot surface properties. Proposed models need to be evaluated against experimental data over a wide range of conditions to determine their predictive strength. These questions are critical for the accurate prediction of soot formation in flames and its emissions from engines. However, this knowledge can also be used to develop predictive process design and optimization tools for carbon black and other nanocarbon formation in reactors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
地表飞猪完成签到,获得积分10
6秒前
6秒前
骆怀薇完成签到 ,获得积分20
6秒前
8秒前
卫卫完成签到 ,获得积分10
11秒前
兔兔完成签到 ,获得积分10
13秒前
yangjian完成签到 ,获得积分10
24秒前
x夏天完成签到 ,获得积分10
26秒前
不安的朋友完成签到,获得积分10
32秒前
磊磊完成签到,获得积分10
33秒前
大白完成签到 ,获得积分10
33秒前
34秒前
normankasimodo完成签到,获得积分10
36秒前
科研女仆完成签到 ,获得积分10
37秒前
rudjs完成签到,获得积分10
37秒前
51秒前
LT完成签到 ,获得积分0
58秒前
58秒前
婉莹完成签到 ,获得积分0
1分钟前
JACN发布了新的文献求助10
1分钟前
su完成签到 ,获得积分10
1分钟前
此时此刻完成签到 ,获得积分10
1分钟前
1分钟前
tangyong完成签到,获得积分10
1分钟前
1分钟前
Axs完成签到,获得积分10
1分钟前
JACN完成签到,获得积分10
1分钟前
应夏山完成签到 ,获得积分0
1分钟前
吃小孩的妖怪完成签到 ,获得积分10
1分钟前
困困困完成签到 ,获得积分0
1分钟前
科研通AI2S应助定西采纳,获得10
1分钟前
1分钟前
KirinLee麒麟完成签到 ,获得积分10
1分钟前
卡卡完成签到,获得积分10
2分钟前
朴素的紫安完成签到 ,获得积分10
2分钟前
俊逸的盛男完成签到 ,获得积分10
2分钟前
故意的书本完成签到 ,获得积分10
2分钟前
悄悄完成签到 ,获得积分10
2分钟前
wonwojo完成签到 ,获得积分10
2分钟前
bezoar完成签到,获得积分10
2分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Study of enhancing employee engagement at workplace by adopting internet of things 200
Minimum Bar Spacing as a Function of Bond and Shear Strength 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837567
求助须知:如何正确求助?哪些是违规求助? 3379673
关于积分的说明 10510120
捐赠科研通 3099308
什么是DOI,文献DOI怎么找? 1707047
邀请新用户注册赠送积分活动 821402
科研通“疑难数据库(出版商)”最低求助积分说明 772615