估计员
核密度估计
核回归
数学
多元核密度估计
推论
变核密度估计
统计
核(代数)
非参数回归
非参数统计
核方法
区间(图论)
区间估计
密度估算
数据挖掘
计算机科学
置信区间
人工智能
支持向量机
离散数学
组合数学
作者
Hoyoung Park,Ji Meng Loh,Woncheol Jang
标识
DOI:10.1080/10485252.2022.2160980
摘要
Symbolic data have become increasingly popular in the era of big data. In this paper, we consider density estimation and regression for interval-valued data, a special type of symbolic data, common in astronomy and official statistics. We propose kernel estimators with adaptive bandwidths to account for variability of each interval. Specifically, we derive cross-validation bandwidth selectors for density estimation and extend the Nadaraya–Watson estimator for regression with interval data. We assess the performance of the proposed methods in comparison with existing kernel methods by extensive simulation studies and real data analysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI