A Fast-Tracking Sample Preparation Protocol for Proteomics of Formalin-Fixed Paraffin-Embedded Tumor Tissues

协议(科学) 跟踪(教育) 样品(材料) 计算机科学 生物医学工程 材料科学 色谱法 医学 化学 病理 心理学 教育学 替代医学
作者
Lancia Darville,John H. Lockhart,Sudhir Putty Reddy,Bin Fang,Victoria Izumi,Theresa A. Boyle,Eric B. Haura,Elsa R. Flores,John M. Koomen
出处
期刊:Methods in molecular biology [Springer Science+Business Media]
卷期号:: 193-223 被引量:1
标识
DOI:10.1007/978-1-0716-3922-1_13
摘要

Archived tumor specimens are routinely preserved by formalin fixation and paraffin embedding. Despite the conventional wisdom that proteomics might be ineffective due to the cross-linking and pre-analytical variables, these samples have utility for both discovery and targeted proteomics. Building on this capability, proteomics approaches can be used to maximize our understanding of cancer biology and clinical relevance by studying preserved tumor tissues annotated with the patients' medical histories. Proteomics of formalin-fixed paraffin-embedded (FFPE) tissues also integrates with histological evaluation and molecular pathology strategies, so that additional collection of research biopsies or resected tumor aliquots is not needed. The acquisition of data from the same tumor sample also overcomes concerns about biological variation between samples due to intratumoral heterogeneity. However, the protein extraction and proteomics sample preparation from FFPE samples can be onerous, particularly for small (i.e., limited or precious) samples. Therefore, we provide a protocol for a recently introduced kit-based EasyPep method with benchmarking against a modified version of the well-established filter-aided sample preparation strategy using laser-capture microdissected lung adenocarcinoma tissues from a genetically engineered mouse model. This model system allows control over the tumor preparation and pre-analytical variables while also supporting the development of methods for spatial proteomics to examine intratumoral heterogeneity. Data are posted in ProteomeXchange (PXD045879).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
laber应助jia采纳,获得30
刚刚
1秒前
小呆毛发布了新的文献求助10
2秒前
2秒前
2秒前
SucceedIn完成签到,获得积分10
3秒前
科研通AI5应助仲夏采纳,获得10
4秒前
滕皓轩发布了新的文献求助10
7秒前
Vivian发布了新的文献求助10
7秒前
科研通AI5应助bobo采纳,获得10
7秒前
wfwl完成签到,获得积分10
7秒前
12秒前
细腻问柳完成签到 ,获得积分10
14秒前
JamesPei应助小栗采纳,获得10
15秒前
15秒前
科研通AI5应助夜话风陵杜采纳,获得10
15秒前
3900完成签到,获得积分10
17秒前
派大星发布了新的文献求助10
18秒前
RPG完成签到,获得积分10
19秒前
journey完成签到 ,获得积分10
21秒前
海森咸鱼堡完成签到,获得积分10
24秒前
26秒前
yuanjie周完成签到 ,获得积分10
27秒前
wdhxy完成签到,获得积分10
28秒前
28秒前
小蘑菇应助lizhiqian2024采纳,获得10
30秒前
infinite发布了新的文献求助10
30秒前
清爽远航完成签到,获得积分10
31秒前
Ava应助hang采纳,获得10
31秒前
32秒前
wgm发布了新的文献求助20
38秒前
完美世界应助lishuai采纳,获得10
38秒前
39秒前
若雨凌风应助zhanglin采纳,获得20
40秒前
烟花应助lizhiqian2024采纳,获得10
42秒前
FashionBoy应助明理的凌旋采纳,获得10
43秒前
orixero应助yangmiemie采纳,获得10
44秒前
Kyrene完成签到,获得积分10
45秒前
芝士蛋糕发布了新的文献求助10
45秒前
搜集达人应助li采纳,获得10
46秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802551
求助须知:如何正确求助?哪些是违规求助? 3348222
关于积分的说明 10337161
捐赠科研通 3064171
什么是DOI,文献DOI怎么找? 1682425
邀请新用户注册赠送积分活动 808168
科研通“疑难数据库(出版商)”最低求助积分说明 764010