翼型
物理
空气动力学
对抗制
航空航天工程
生成语法
机械
人工智能
计算机科学
工程类
作者
Shi-Yi Jin,Shu-sheng Chen,Shi-Qi Che,Jinping Li,Jia-Hao Lin,Zhenghong Gao
出处
期刊:Physics of Fluids
[American Institute of Physics]
日期:2024-07-01
卷期号:36 (7)
被引量:1
摘要
Aerodynamic/stealth design is becoming an important factor in the advanced airfoil design. In this work, a supervised machine learning method is proposed for aerodynamic and stealth integrated airfoil design. The conditional generative adversarial network (CGAN) is constructed for the multidisciplinary design of airfoil. Then, the generator and discriminator simply using deep neural network have good robustness and stability in training. The CGAN model also shows good generalization capability in the test set, with less than 1% error in fitting to the airfoil profile data, and the generated airfoils are within 10% error compared to the test airfoil aerodynamic stealth characteristics. In addition, the optimization results based on the CGAN model demonstrate that aerodynamic performance improvement would increase the airfoil camber and stealth performance improvement would sharpen the airfoil leading edge.
科研通智能强力驱动
Strongly Powered by AbleSci AI