Sentiment Analysis: Predicting Product Reviews for E-Commerce Recommendations Using Deep Learning and Transformers

计算机科学 深度学习 文字2vec 情绪分析 社会化媒体 编码器 人工智能 产品(数学) 卷积神经网络 机器学习 数据科学 嵌入 万维网 几何学 数学 操作系统
作者
Oumaima Bellar,Amine Baïna,Mostafa Ballafkih
出处
期刊:Mathematics [Multidisciplinary Digital Publishing Institute]
卷期号:12 (15): 2403-2403 被引量:1
标识
DOI:10.3390/math12152403
摘要

The abundance of publicly available data on the internet within the e-marketing domain is consistently expanding. A significant portion of this data revolve around consumers’ perceptions and opinions regarding the goods or services of organizations, making it valuable for market intelligence collectors in marketing, customer relationship management, and customer retention. Sentiment analysis serves as a tool for examining customer sentiment, marketing initiatives, and product appraisals. This valuable information can inform decisions related to future product and service development, marketing campaigns, and customer service enhancements. In social media, predicting ratings is commonly employed to anticipate product ratings based on user reviews. Our study provides an extensive benchmark comparison of different deep learning models, including convolutional neural networks (CNN), recurrent neural networks (RNN), and bi-directional long short-term memory (Bi-LSTM). These models are evaluated using various word embedding techniques, such as bi-directional encoder representations from transformers (BERT) and its derivatives, FastText, and Word2Vec. The evaluation encompasses two setups: 5-class versus 3-class. This paper focuses on sentiment analysis using neural network-based models for consumer sentiment prediction by evaluating and contrasting their performance indicators on a dataset of reviews of different products from customers of an online women’s clothes retailer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
棒棒冰发布了新的文献求助10
刚刚
asdfg完成签到,获得积分10
1秒前
1秒前
1秒前
JamesPei应助小慧儿采纳,获得10
1秒前
1秒前
1秒前
1秒前
jon158发布了新的文献求助10
1秒前
1秒前
luoxuezhiyin发布了新的文献求助200
1秒前
1秒前
1秒前
1秒前
2秒前
欧阳半仙完成签到,获得积分10
2秒前
SYLH应助ee采纳,获得10
2秒前
2秒前
2秒前
英姑应助zzz采纳,获得10
2秒前
2秒前
3秒前
3秒前
3秒前
3秒前
机智的飞鸟完成签到 ,获得积分10
3秒前
刘天宇发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
4秒前
4秒前
zcw完成签到,获得积分10
4秒前
4秒前
Freya完成签到 ,获得积分10
4秒前
嗯嗯发布了新的文献求助10
5秒前
穿堂风发布了新的文献求助10
5秒前
悦耳听芹完成签到,获得积分10
5秒前
5秒前
5秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808655
求助须知:如何正确求助?哪些是违规求助? 3353413
关于积分的说明 10365062
捐赠科研通 3069602
什么是DOI,文献DOI怎么找? 1685698
邀请新用户注册赠送积分活动 810656
科研通“疑难数据库(出版商)”最低求助积分说明 766240