Predicting Dimensional Antidepressant Response to Repetitive Transcranial Magnetic Stimulation using Pretreatment Resting-state Functional Connectivity

默认模式网络 磁刺激 抗抑郁药 心理学 静息状态功能磁共振成像 评定量表 功能连接 萧条(经济学) 心情 抑郁症状 神经科学 刺激 临床心理学 精神科 认知 发展心理学 焦虑 经济 宏观经济学
作者
Benjamin Wade,Tracy Barbour,Kristen K. Ellard,Joan A. Camprodon
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-3204245/v1
摘要

Repetitive transcranial magnetic stimulation (rTMS) is an effective treatment for depression and has been shown to modulate resting-state functional connectivity (RSFC) of depression-relevant neural circuits. To date, however, few studies have investigated whether individual treatment-related symptom changes are predictable from pretreatment RSFC. We use machine learning to predict dimensional changes in depressive symptoms using pretreatment patterns of RSFC. We hypothesized that changes in dimensional depressive symptoms would be predicted more accurately than scale total scores. Patients with depression (n=26) underwent pretreatment RSFC MRI. Depressive symptoms were assessed with the 17-item Hamilton Depression Rating Scale (HDRS-17). Random forest regression (RFR) models were trained and tested to predict treatment-related symptom changes captured by the HDRS-17, HDRS-6 and three previously identified HDRS subscales: core mood/anhedonia (CMA), somatic disturbances, and insomnia. Changes along the CMA, HDRS-17, and HDRS-6 were predicted significantly above chance, with 9%, 2%, and 2% of out-of-sample outcome variance explained, respectively (all p<0.01). CMA changes were predicted more accurately than the HDRS-17 (p<0.05). Higher baseline global connectivity (GC) of default mode network (DMN) subregions and the somatomotor network (SMN) predicted poorer symptom reduction, while higher GC of the right dorsal attention (DAN) frontoparietal control (FPCN), and visual networks (VN) predicted reduced CMA symptoms. HDRS-17 and HDRS-6 changes were predicted with similar GC patterns. These results suggest that RSFC spanning the DMN, SMN, DAN, FPCN, and VN subregions predict dimensional changes with greater accuracy than syndromal changes following rTMS. These findings highlight the need to assess more granular clinical dimensions in therapeutic studies, particularly device neuromodulation studies, and echo earlier studies supporting that dimensional outcomes improve model accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dongdongqiang完成签到,获得积分10
刚刚
考研的青蛙完成签到 ,获得积分10
1秒前
paulin完成签到,获得积分10
2秒前
8秒前
端庄梦桃完成签到,获得积分10
9秒前
pluto应助忧心的寄松采纳,获得20
9秒前
英姑应助小福采纳,获得10
12秒前
12秒前
LIJINGGE发布了新的文献求助10
13秒前
13秒前
hfhyf关注了科研通微信公众号
15秒前
17秒前
八宝粥我爱喝完成签到 ,获得积分10
18秒前
ss应助火星上云朵采纳,获得20
18秒前
内向问旋发布了新的文献求助10
18秒前
周诗蔼发布了新的文献求助10
19秒前
搜集达人应助bi8bo采纳,获得10
19秒前
66完成签到 ,获得积分10
21秒前
笑傲完成签到,获得积分10
22秒前
王小可完成签到 ,获得积分10
23秒前
23秒前
Chief完成签到,获得积分0
31秒前
31秒前
33秒前
36秒前
38秒前
Souliko发布了新的文献求助10
40秒前
九思给九思的求助进行了留言
40秒前
LIJINGGE发布了新的文献求助10
44秒前
xiaopingbing完成签到 ,获得积分10
48秒前
雪白的映菱完成签到 ,获得积分10
49秒前
53秒前
53秒前
研友_LwbYv8完成签到,获得积分10
54秒前
風起天岚完成签到,获得积分10
55秒前
大模型应助科研通管家采纳,获得10
57秒前
慕青应助科研通管家采纳,获得10
57秒前
Ava应助科研通管家采纳,获得10
57秒前
Owen应助科研通管家采纳,获得10
57秒前
慕青应助科研通管家采纳,获得10
57秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778743
求助须知:如何正确求助?哪些是违规求助? 3324286
关于积分的说明 10217819
捐赠科研通 3039427
什么是DOI,文献DOI怎么找? 1668081
邀请新用户注册赠送积分活动 798533
科研通“疑难数据库(出版商)”最低求助积分说明 758401