Autologous Transplantation Tooth Guide Design Based on Deep Learning

医学 金标准(测试) 管道(软件) 水准点(测量) 深度学习 标准差 锥束ct 人工智能 计算机科学 外科 统计 放射科 数学 移植 计算机断层摄影术 程序设计语言 地理 大地测量学
作者
Lifen Wei,Shuyang Wu,Zelun Huang,Yaxin Chen,Haoran Zheng,Liping Wang
出处
期刊:Journal of Oral and Maxillofacial Surgery [Elsevier]
卷期号:82 (3): 314-324 被引量:5
标识
DOI:10.1016/j.joms.2023.09.014
摘要

Autolog tooth transplantation requires precise surgical guide design, involving manual tracing of donor tooth contours based on patient cone-beam computed tomography (CBCT) scans. While manual corrections are time-consuming and prone to human errors, deep learning-based approaches show promise in reducing labor and time costs while minimizing errors. However, the application of deep learning techniques in this particular field is yet to be investigated.We aimed to assess the feasibility of replacing the traditional design pipeline with a deep learning-enabled autologous tooth transplantation guide design pipeline.This retrospective cross-sectional study used 79 CBCT images collected at the Guangzhou Medical University Hospital between October 2022 and March 2023. Following preprocessing, a total of 5,070 region of interest images were extracted from 79 CBCT images.Autologous tooth transplantation guide design pipelines, either based on traditional manual design or deep learning-based design.The main outcome variable was the error between the reconstructed model and the gold standard benchmark. We used the third molar extracted clinically as the gold standard and leveraged it as the benchmark for evaluating our reconstructed models from different design pipelines. Both trueness and accuracy were used to evaluate this error. Trueness was assessed using the root mean square (RMS), and accuracy was measured using the standard deviation. The secondary outcome variable was the pipeline efficiency, assessed based on the time cost. Time cost refers to the amount of time required to acquire the third molar model using the pipeline.Data were analyzed using the Kruskal-Wallis test. Statistical significance was set at P < .05.In the surface matching comparison for different reconstructed models, the deep learning group achieved the lowest RMS value (0.335 ± 0.066 mm). There were no significant differences in RMS values between manual design by a senior doctor and deep learning-based design (P = .688), and the standard deviation values did not differ among the 3 groups (P = .103). The deep learning-based design pipeline (0.017 ± 0.001 minutes) provided a faster assessment compared to the manual design pipeline by both senior (19.676 ± 2.386 minutes) and junior doctors (30.613 ± 6.571 minutes) (P < .001).The deep learning-based automatic pipeline exhibited similar performance in surgical guide design for autogenous tooth transplantation compared to manual design by senior doctors, and it minimized time costs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助花不语采纳,获得10
刚刚
2秒前
chenhaohan完成签到,获得积分20
2秒前
czm33发布了新的文献求助10
4秒前
Owen应助微笑语山采纳,获得10
6秒前
7秒前
南川完成签到,获得积分10
7秒前
爱你哦发布了新的文献求助10
7秒前
玖玖完成签到,获得积分10
7秒前
sschen完成签到,获得积分10
8秒前
刘威远完成签到,获得积分20
8秒前
xiaoma发布了新的文献求助10
9秒前
fff完成签到,获得积分10
9秒前
小于要毕业完成签到,获得积分10
10秒前
11秒前
科研通AI6应助顾远采纳,获得10
13秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
niNe3YUE应助爱你哦采纳,获得10
15秒前
15秒前
16秒前
16秒前
19秒前
19秒前
认真代曼发布了新的文献求助10
19秒前
香香香发布了新的文献求助10
22秒前
22秒前
君泽发布了新的文献求助10
23秒前
Sega发布了新的文献求助10
24秒前
赘婿应助梦醒了采纳,获得10
25秒前
归去来兮发布了新的文献求助10
25秒前
27秒前
28秒前
陈静完成签到,获得积分10
29秒前
xiaoma发布了新的文献求助10
30秒前
31秒前
华仔应助季小艾采纳,获得10
31秒前
毛头侠发布了新的文献求助10
32秒前
33秒前
Sega完成签到,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5553201
求助须知:如何正确求助?哪些是违规求助? 4637738
关于积分的说明 14650872
捐赠科研通 4579617
什么是DOI,文献DOI怎么找? 2511731
邀请新用户注册赠送积分活动 1486663
关于科研通互助平台的介绍 1457653