Hydrothermal synthesis of porous CdS/Bi2S3/BiOIO3 nanocomposites for solar-driven photocatalytic degradation of rhodamine B

罗丹明B 光催化 材料科学 降级(电信) 化学工程 可见光谱 猝灭(荧光) 带隙 吸收(声学) 异质结 光化学 化学 光电子学 复合材料 荧光 有机化学 光学 电信 物理 计算机科学 工程类 催化作用
作者
Miaojuan Dai,Ruixue Xue,Minmin Liu,Zijun Wang
出处
期刊:Journal of Alloys and Compounds [Elsevier]
卷期号:971: 172784-172784 被引量:13
标识
DOI:10.1016/j.jallcom.2023.172784
摘要

A heterojunction structure incorporating three photocatalysts, corresponding to a ternary composite CdS/Bi2S3/BiOIO3, was proposed to address the issues of poor stability, low efficiency in utilizing visible light, and poor performance in degrading refractory organic pollutants for conventional photocatalysts. Therefore, the interconnected CdS/Bi2S3/BiOIO3 structure facilitated the transfer of electrons from Bi2S3 to BiOIO3 by reducing the band gap, as well as the transfer of h+ from BiOIO3 to Bi2S3. As a result, slow carrier recombination and a decreasing band gap were found, resulting in the good performance of RhB degradation. As a medium, CdS could improve the e- and h+ transmission efficiency between Bi2S3 and BiOIO3. According to performance measurements, after excluding the influence of adsorption, the photocatalytic activity of CdS/Bi2S3/BiOIO3 reached 94.22 % after 30 min and remained stable after five cycles. A quenching experiment illustrating the importance of superoxide and hydroxyl radicals in RhB degradation, which might be applied to other refractory organic contaminants. DRS studies demonstrated that the composite combines the benefits of CdS and Bi2S3, with better light absorption across a broader wavelength range. According to the photocatalytic mechanism, the formation of a compact, three-component heterostructure at the interface increases light absorption while decreasing electron-hole recombination. The results of corresponding novels may yield valuable insights for the development of an effective approach in the design of a high-performance photocatalysis system for the degradation of pollutants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ffhh完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
包容元芹完成签到,获得积分10
3秒前
4秒前
科研通AI6应助yy采纳,获得10
4秒前
4秒前
5秒前
一一发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
yee发布了新的文献求助10
6秒前
木又应助huihui采纳,获得20
6秒前
6秒前
8秒前
Liu发布了新的文献求助10
8秒前
欣喜雅香发布了新的文献求助10
8秒前
666发布了新的文献求助20
9秒前
9秒前
9秒前
小白完成签到 ,获得积分10
9秒前
英吉利25发布了新的文献求助10
10秒前
Akim应助明亮的草丛采纳,获得10
10秒前
10秒前
所所应助袁睿韬采纳,获得10
11秒前
ysl发布了新的文献求助30
11秒前
Free完成签到,获得积分10
11秒前
最佳阻尼比完成签到,获得积分10
12秒前
睿力完成签到,获得积分10
12秒前
传统的雨文完成签到,获得积分10
12秒前
12秒前
李小小发布了新的文献求助10
12秒前
情怀应助燃斧辉光采纳,获得10
12秒前
Infinite_应助街道办事部采纳,获得10
13秒前
y741应助nicaicai采纳,获得10
15秒前
15秒前
wangyiren发布了新的文献求助10
15秒前
哟哟哟完成签到,获得积分10
16秒前
充电宝应助李大侠采纳,获得10
16秒前
科研通AI6应助yy采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5630726
求助须知:如何正确求助?哪些是违规求助? 4723433
关于积分的说明 14975167
捐赠科研通 4788960
什么是DOI,文献DOI怎么找? 2557317
邀请新用户注册赠送积分活动 1518042
关于科研通互助平台的介绍 1478679