Extended-gate structure for carbon-based field effect transistor type formaldehyde gas sensor

材料科学 纳米技术 制作 场效应晶体管 晶体管 半导体 计算机科学 光电子学 电气工程 工程类 电压 医学 病理 替代医学
作者
Lin Shi,Li Gong,Yiwei Wang,Yuqing Li,Yong Zhang
出处
期刊:Sensors and Actuators B-chemical [Elsevier BV]
卷期号:400: 134944-134944 被引量:11
标识
DOI:10.1016/j.snb.2023.134944
摘要

Field effect transistor (FET) type gas sensor plays a crucial role in real-time environmental monitoring, medical pre-diagnosis, and industrial control because of its trace hazardous gases detection capability, which can be attributed to the unique amplification of the electrical signal on its gate by FET. Limited by the nano-micro level manufacturing process, the controllable deposition of the tiny sensing gate composed of gas sensing materials and material selection limitations considering semiconductor process compatibility have become bottlenecks in developing FET-type gas sensors. Herein, based on a high-performance FET with semiconducting single-walled carbon nanotubes as the channel, a universal strategy of constructing an extended-gate structure by inkjet printing technology is proposed to realize the detection of trace gases. CuO widely used for HCHO detection is applied to this strategy, and the as-prepared EG-FET sensor has a limit of detection of 20 ppb for HCHO, good repeatability, long-term stability, and selectivity, which greatly improves the ability of conventional chemiresistive gas sensor to detect HCHO. The development of the EG structure makes the controlled deposition of gas sensing materials more accessible, and the introduction of inkjet printing expands the choices of sensing materials. In particular, it solves the issue of poor reproducibility in the fabrication of gas sensors from gas sensing materials and provides a feasible scheme for the reported excellent gas sensing materials from laboratory to application. We expect this work can provide a meaningful theoretical and experimental basis for the realization of high-performance trace gas sensors with the potential for on-chip integration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助nihui采纳,获得10
1秒前
1秒前
Mmc完成签到,获得积分10
1秒前
奶牛猫完成签到 ,获得积分10
2秒前
飘逸问薇完成签到 ,获得积分10
2秒前
Echo发布了新的文献求助30
2秒前
不安毛豆发布了新的文献求助10
4秒前
孤烟完成签到,获得积分20
4秒前
5秒前
JNL完成签到,获得积分10
5秒前
tian发布了新的文献求助10
6秒前
包凡之完成签到,获得积分10
6秒前
希望天下0贩的0应助新陈采纳,获得10
7秒前
大鹏应助Rena采纳,获得10
7秒前
柳尖尖完成签到,获得积分10
8秒前
8秒前
Febrine0502发布了新的文献求助10
10秒前
柒_l完成签到,获得积分10
11秒前
科研通AI5应助xieji采纳,获得10
11秒前
Alice完成签到,获得积分10
11秒前
科研通AI5应助tian采纳,获得100
11秒前
阳光大有完成签到,获得积分10
11秒前
11秒前
不安毛豆完成签到,获得积分10
12秒前
销户完成签到 ,获得积分10
12秒前
JamesPei应助土豆侠采纳,获得10
12秒前
13秒前
yzzzz完成签到,获得积分10
13秒前
14秒前
21发布了新的文献求助10
17秒前
十个勤天完成签到,获得积分10
18秒前
新陈发布了新的文献求助10
18秒前
坚强的元瑶完成签到,获得积分10
19秒前
弹剑作歌完成签到,获得积分10
19秒前
复杂的雪巧完成签到,获得积分10
20秒前
歌德商务楼完成签到,获得积分10
22秒前
22秒前
23秒前
土豆侠发布了新的文献求助10
26秒前
zhx完成签到,获得积分10
27秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781110
求助须知:如何正确求助?哪些是违规求助? 3326526
关于积分的说明 10227602
捐赠科研通 3041675
什么是DOI,文献DOI怎么找? 1669552
邀请新用户注册赠送积分活动 799100
科研通“疑难数据库(出版商)”最低求助积分说明 758734