人工智能
计算机科学
姿势
稳健性(进化)
计算机视觉
单眼
保险丝(电气)
三维姿态估计
帧(网络)
对象(语法)
代表(政治)
序列(生物学)
模式识别(心理学)
工程类
生物
政治
基因
电气工程
电信
生物化学
遗传学
化学
法学
政治学
作者
Jun Wu,Rong Xiong,Yue Wang
标识
DOI:10.1109/icus58632.2023.10318349
摘要
The existing object pose estimation methods mostly rely on single-frame observations, which exhibit poor robustness in occluded scenes. Since obtaining multi-frame sequential inputs is plausible in robot operations, we present a framework to perform object pose estimation from a monocular sequence. Different from predicting poses in each view before fusing them, we propose to directly reconstruct a volumetric representation for each sequence to provide temporal consistent pose estimates. A gated recurrent units module is deployed to guide the network to fuse features from previous and current views. The experiments conducted on widely recognized benchmarks demonstrate that our approach surpasses the performance of state-of-the-art techniques.
科研通智能强力驱动
Strongly Powered by AbleSci AI