A Deep Learning Image Reconstruction Algorithm for Improving Image Quality and Hepatic Lesion Detectability in Abdominal Dual-Energy Computed Tomography: Preliminary Results

医学 图像质量 迭代重建 核医学 图像噪声 断层摄影术 放射科 人工智能 计算机科学 图像(数学)
作者
Bingqian Chu,Lu Gan,Yi Shen,Jian Song,Ling Liu,Jianying Li,Bin Liu
出处
期刊:Journal of Digital Imaging [Springer Science+Business Media]
卷期号:36 (6): 2347-2355 被引量:8
标识
DOI:10.1007/s10278-023-00893-y
摘要

Abstract This study aimed to compare the performance of deep learning image reconstruction (DLIR) and adaptive statistical iterative reconstruction-Veo (ASIR-V) in improving image quality and diagnostic performance using virtual monochromatic spectral images in abdominal dual-energy computed tomography (DECT). Sixty-two patients [mean age ± standard deviation (SD): 56 years ± 13; 30 men] who underwent abdominal DECT were prospectively included in this study. The 70-keV DECT images in the portal phase were reconstructed at 5-mm and 1.25-mm slice thicknesses with 40% ASIR-V (ASIR-V40%) and at 1.25-mm slice with deep learning image reconstruction at medium (DLIR-M) and high (DLIR-H) levels and then compared. Computed tomography (CT) attenuation, SD values, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were measured in the liver, spleen, erector spinae, and intramuscular fat. The lesions in each reconstruction group at 1.25-mm slice thickness were counted. The image quality and diagnostic confidence were subjectively evaluated by two radiologists using a 5-point scale. For the 1.25-mm images, DLIR-M and DLIR-H had lower SD, higher SNR and CNR, and better subjective image quality compared with ASIR-V40%; DLIR-H performed the best (all P values < 0.001). Furthermore, the 1.25-mm DLIR-H images had similar SD, SNR, and CNR values as the 5-mm ASIR-V40% images (all P > 0.05). Three image groups had similar lesion detection rates, but DLIR groups exhibited higher confidence in diagnosing lesions. Compared with ASIR-V40% at 70 keV, 70-keV DECT with DLIR-H further reduced image noise and improved image quality. Additionally, it improved diagnostic confidence while ensuring a consistent lesion detection rate of liver lesions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
醉清风完成签到 ,获得积分10
15秒前
whuhustwit完成签到,获得积分10
21秒前
lynn完成签到,获得积分10
24秒前
Gary完成签到 ,获得积分10
25秒前
Damon完成签到 ,获得积分10
26秒前
博士后完成签到 ,获得积分10
27秒前
jia完成签到 ,获得积分10
28秒前
30秒前
恋暖发布了新的文献求助10
34秒前
FL完成签到 ,获得积分10
36秒前
SYLH应助minuxSCI采纳,获得10
37秒前
朱婷完成签到 ,获得积分10
46秒前
48秒前
48秒前
49秒前
xiongqi完成签到 ,获得积分10
50秒前
堀江真夏完成签到 ,获得积分10
59秒前
lixiniverson完成签到 ,获得积分10
1分钟前
与离完成签到 ,获得积分10
1分钟前
夜倾心完成签到,获得积分10
1分钟前
www258357完成签到,获得积分20
1分钟前
aaa0001984完成签到,获得积分0
1分钟前
踏实的半雪完成签到 ,获得积分20
1分钟前
ARIA完成签到 ,获得积分10
1分钟前
赵勇完成签到 ,获得积分10
1分钟前
研友_LpvQlZ完成签到,获得积分10
2分钟前
jenny_shjn完成签到,获得积分10
2分钟前
踏实的半雪关注了科研通微信公众号
2分钟前
laber完成签到,获得积分10
2分钟前
布蓝图完成签到 ,获得积分10
2分钟前
你在教我做事啊完成签到 ,获得积分10
2分钟前
可爱的函函应助zzy采纳,获得10
2分钟前
CipherSage应助踏实的半雪采纳,获得20
2分钟前
Fiona完成签到 ,获得积分10
2分钟前
cdercder应助科研通管家采纳,获得10
2分钟前
2分钟前
GB完成签到 ,获得积分10
3分钟前
Echoheart发布了新的文献求助10
3分钟前
xiaoluuu完成签到 ,获得积分10
3分钟前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800967
求助须知:如何正确求助?哪些是违规求助? 3346521
关于积分的说明 10329541
捐赠科研通 3063031
什么是DOI,文献DOI怎么找? 1681330
邀请新用户注册赠送积分活动 807474
科研通“疑难数据库(出版商)”最低求助积分说明 763721