卷积神经网络
计算机科学
人工智能
分割
模式识别(心理学)
深度学习
脑瘤
图像分割
磁共振成像
人工神经网络
机器学习
放射科
医学
病理
作者
Atika Akter,Nazeela Nosheen,Sabbir Ahmed,Mariom Hossain,Mohammad Abu Yousuf,Mohammad Ali Abdullah Almoyad,Khondokar Fida Hasan,Mohammad Ali Moni
标识
DOI:10.1016/j.eswa.2023.122347
摘要
Early diagnosis of brain tumors is critical for enhancing patient prognosis and treatment options, while accurate classification and segmentation of brain tumors are vital for developing personalized treatment strategies. Despite the widespread use of Magnetic Resonance Imaging (MRI) for brain examination and advances in AI-based detection methods, building an accurate and efficient model for detecting and categorizing tumors from MRI images remains a challenge. To address this problem, we proposed a deep Convolutional Neural Network (CNN)-based architecture for automatic brain image classification into four classes and a U-Net-based segmentation model. Using six benchmarked datasets, we tested the classification model and trained the segmentation model, enabling side-by-side comparison of the impact of segmentation on tumor classification in brain MRI images. We also evaluated two classification methods based on accuracy, recall, precision, and AUC. Our developed novel deep learning-based model for brain tumor classification and segmentation outperforms existing pre-trained models across all six datasets. The results demonstrate that our classification model achieved the highest accuracy of 98.7% in a merged dataset and 98.8% with the segmentation approach, with the highest classification accuracy reaching 97.7% among the four individual datasets. Thus, this novel framework could be applicable in clinics for the automatic identification and segmentation of brain tumors utilizing MRI scan input images.
科研通智能强力驱动
Strongly Powered by AbleSci AI