Robust clinical applicable CNN and U-Net based algorithm for MRI classification and segmentation for brain tumor

卷积神经网络 计算机科学 人工智能 分割 模式识别(心理学) 深度学习 脑瘤 图像分割 磁共振成像 人工神经网络 机器学习 放射科 医学 病理
作者
Atika Akter,Nazeela Nosheen,Sabbir Ahmed,Mariom Hossain,Mohammad Abu Yousuf,Mohammad Ali Abdullah Almoyad,Khondokar Fida Hasan,Mohammad Ali Moni
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 122347-122347 被引量:76
标识
DOI:10.1016/j.eswa.2023.122347
摘要

Early diagnosis of brain tumors is critical for enhancing patient prognosis and treatment options, while accurate classification and segmentation of brain tumors are vital for developing personalized treatment strategies. Despite the widespread use of Magnetic Resonance Imaging (MRI) for brain examination and advances in AI-based detection methods, building an accurate and efficient model for detecting and categorizing tumors from MRI images remains a challenge. To address this problem, we proposed a deep Convolutional Neural Network (CNN)-based architecture for automatic brain image classification into four classes and a U-Net-based segmentation model. Using six benchmarked datasets, we tested the classification model and trained the segmentation model, enabling side-by-side comparison of the impact of segmentation on tumor classification in brain MRI images. We also evaluated two classification methods based on accuracy, recall, precision, and AUC. Our developed novel deep learning-based model for brain tumor classification and segmentation outperforms existing pre-trained models across all six datasets. The results demonstrate that our classification model achieved the highest accuracy of 98.7% in a merged dataset and 98.8% with the segmentation approach, with the highest classification accuracy reaching 97.7% among the four individual datasets. Thus, this novel framework could be applicable in clinics for the automatic identification and segmentation of brain tumors utilizing MRI scan input images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奇奇怪怪发布了新的文献求助10
1秒前
2秒前
2秒前
SciGPT应助可乐采纳,获得10
2秒前
柚子皮发布了新的文献求助10
4秒前
复杂听莲发布了新的文献求助10
5秒前
韩凡发布了新的文献求助10
5秒前
科研通AI5应助fgb采纳,获得10
9秒前
爆米花应助章宇程采纳,获得10
10秒前
SYLH应助奇奇怪怪采纳,获得10
10秒前
SYLH应助wu采纳,获得30
11秒前
12秒前
13秒前
桐桐应助安之于数采纳,获得10
13秒前
16秒前
18秒前
bibgyueli完成签到,获得积分10
19秒前
pyimh发布了新的文献求助10
20秒前
yangg完成签到,获得积分10
21秒前
aaiirrii发布了新的文献求助10
24秒前
26秒前
平常安雁完成签到 ,获得积分10
27秒前
28秒前
SYLH应助淡定海亦采纳,获得10
28秒前
O已w时o完成签到,获得积分10
29秒前
小马甲应助科研通管家采纳,获得10
30秒前
30秒前
30秒前
Owen应助科研通管家采纳,获得10
30秒前
科研通AI5应助科研通管家采纳,获得10
30秒前
30秒前
30秒前
小蘑菇应助科研通管家采纳,获得10
31秒前
爆米花应助科研通管家采纳,获得10
31秒前
科研通AI5应助科研通管家采纳,获得10
31秒前
慕青应助科研通管家采纳,获得10
31秒前
领导范儿应助科研通管家采纳,获得30
31秒前
31秒前
坚强丹雪完成签到,获得积分10
34秒前
刘玉梅完成签到,获得积分10
36秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Progress in Inorganic Chemistry 200
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825758
求助须知:如何正确求助?哪些是违规求助? 3367957
关于积分的说明 10448523
捐赠科研通 3087392
什么是DOI,文献DOI怎么找? 1698660
邀请新用户注册赠送积分活动 816871
科研通“疑难数据库(出版商)”最低求助积分说明 769973