Development of Series-Parallel and Neural-Network Based Models for Predicting Electrical Conductivity of Polymer Nanocomposite

系列(地层学) 人工神经网络 纳米复合材料 电导率 电阻率和电导率 聚合物 计算机科学 材料科学 人工智能 复合材料 电气工程 工程类 物理 生物 古生物学 量子力学
作者
Oladipo Folorunso,Peter Olukanmi,Thokozani Shongwe,Emmanuel Rotimi Sadiku,Yskandar Hamam
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 92875-92886 被引量:7
标识
DOI:10.1109/access.2023.3309048
摘要

Polymer nanocomposites are emerging hybrid materials for the production of energy storage electrodes, biomedical sensors, and building construction materials. However, experimentation cost and time can be unfavorable to their performance investigation. Therefore, using a modeling approach to predict the electrical conductivity of polymer nanocomposite is an effective approach in mitigating experimentation cost and time. Since the polymer nanocomposites’ electrical conductivity depends on several factors, the engagement of efficient analytical models for predicting their properties, cannot be overemphasized. Herein, this study developed a series-parallel model, which incorporates the connection between the polymer and the nanofillers for the prediction of the electrical conductivity of graphene-polypyrrole (Gr-PPy) and reduced graphene oxide/polyvinyl alcohol/polypyrrole (RGO/PVA/PPy) nanocomposites. In addition to explicit modelling, an artificial intelligence approach (neural network) was also explored for the prediction tasks. The results of the models in an entity and when compared to an existing model, show flexibility and accuracy for the polymer nanocomposites electrical conductivity prediction. It can be inferred that the model can be suitable to predict the electrical conductivity of polymer nanocomposites.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田园镇完成签到 ,获得积分10
3秒前
5秒前
6秒前
范1发布了新的文献求助10
8秒前
8秒前
11秒前
Asuna发布了新的文献求助10
12秒前
乐乐应助科研通管家采纳,获得10
13秒前
彭于晏应助科研通管家采纳,获得10
13秒前
Akim应助科研通管家采纳,获得10
14秒前
隐形曼青应助科研通管家采纳,获得10
14秒前
英俊的铭应助科研通管家采纳,获得30
14秒前
14秒前
彭于晏应助科研通管家采纳,获得10
14秒前
科研菜j应助科研通管家采纳,获得20
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
14秒前
852应助科研通管家采纳,获得10
14秒前
汉堡包应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
NexusExplorer应助科研通管家采纳,获得10
14秒前
小新应助科研通管家采纳,获得10
14秒前
顾矜应助科研通管家采纳,获得10
14秒前
ding应助科研通管家采纳,获得10
14秒前
unqiue应助科研通管家采纳,获得10
14秒前
隐形曼青应助科研通管家采纳,获得10
15秒前
上官若男应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
15秒前
wanci应助科研通管家采纳,获得10
15秒前
15秒前
Asuna完成签到,获得积分10
18秒前
沉静山兰发布了新的文献求助10
20秒前
22秒前
Orange应助加百莉采纳,获得10
23秒前
小王要努力完成签到,获得积分10
24秒前
蜗牛驳回了厚朴应助
25秒前
面团应助困困羊采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557785
求助须知:如何正确求助?哪些是违规求助? 4642836
关于积分的说明 14669258
捐赠科研通 4584253
什么是DOI,文献DOI怎么找? 2514716
邀请新用户注册赠送积分活动 1488897
关于科研通互助平台的介绍 1459566