Online cross session electromyographic hand gesture recognition using deep learning and transfer learning

计算机科学 手势识别 人工智能 手势 学习迁移 深度学习 卷积神经网络 分类器(UML) 模式识别(心理学) 线性判别分析 特征(语言学) 特征向量 特征学习 特征提取 语音识别 机器学习 哲学 语言学
作者
Zhen Zhang,Shilong Liu,Yanyu Wang,Wei Song,Yuhui Zhang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:127: 107251-107251 被引量:2
标识
DOI:10.1016/j.engappai.2023.107251
摘要

In recent years, hand gesture recognition in human-computer interfaces is usually based on surface electromyography because the signals are non-intrusive and are not affected by the variations of light, position, and orientation of the hand. Deep learning algorithms have become increasingly more prominent in gesture recognition for the ability to automatically learn features from large amounts of data. However, delicate and complicated network structures brought by deep learning, which are elaborately designed for cross session tasks, need more computing time to be trained and tested, which can hardly be applied to the online system. In this study, an online electromyographic hand gesture recognition method using deep learning and transfer learning is proposed. The deep learning model includes a feature extractor, a label classifier, and a gesture predictor. The feature extractor is based on the temporal convolutional network, which is designed to learn high-level discriminant features from the input signals. The label classifier includes three fully connected layers, designed to classify hand gesture labels using the feature vector which is produced by the feature extractor. The gesture predictor uses a threshold voting algorithm to predict the gesture, used at the stage of testing to perform the online recognition. Transfer learning technique is used to transfer model parameters from one pre-trained model, which costs less time and can be applied for online applications. The proposed model is verified on both the Myo dataset and the public NinaPro database. The proposed transfer learning scheme is shown to systematically and significantly enhance the performance of the proposed model on the two datasets, only using no more than three sessions to retrain the label predictor can achieve the accuracy of more than 90% of that obtained though the normal training of the whole parts of the model using full training sessions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平常的毛豆应助冒泡采纳,获得10
2秒前
qwt发布了新的文献求助10
3秒前
CipherSage应助吴北北采纳,获得10
3秒前
3秒前
4秒前
wang完成签到,获得积分10
5秒前
Hello应助亻圭采纳,获得10
7秒前
Lizhe发布了新的文献求助10
8秒前
饭饭完成签到 ,获得积分10
9秒前
10秒前
元羞花发布了新的文献求助10
10秒前
qiang发布了新的文献求助10
10秒前
qwt完成签到,获得积分20
13秒前
13秒前
14秒前
14秒前
16秒前
戴岱发布了新的文献求助10
16秒前
AnnieSsy发布了新的文献求助10
18秒前
Cong发布了新的文献求助10
18秒前
18秒前
闪闪自中发布了新的文献求助10
20秒前
pu关闭了pu文献求助
20秒前
yang发布了新的文献求助10
20秒前
虞美人发布了新的文献求助10
21秒前
23秒前
包凡之发布了新的文献求助10
23秒前
23秒前
清新的Q发布了新的文献求助10
24秒前
24秒前
北冥有鱼完成签到,获得积分10
25秒前
戴岱完成签到,获得积分10
26秒前
量子星尘发布了新的文献求助10
27秒前
犹豫酸奶发布了新的文献求助10
27秒前
小二郎应助韩璐采纳,获得10
27秒前
fst发布了新的文献求助10
28秒前
斯文败类应助Aria_chao采纳,获得10
28秒前
细心可乐发布了新的文献求助10
28秒前
29秒前
30秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Astrochemistry 1000
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3874709
求助须知:如何正确求助?哪些是违规求助? 3417164
关于积分的说明 10701966
捐赠科研通 3141434
什么是DOI,文献DOI怎么找? 1733306
邀请新用户注册赠送积分活动 835956
科研通“疑难数据库(出版商)”最低求助积分说明 782303