A novel graph attention network for underwater object detection

计算机科学 水下 图形 人工智能 理论计算机科学 地质学 海洋学
作者
Xinyu Wang,Qingzheng Wang,Wenhui Liu,Xingqin Wang,Zicong Mai
标识
DOI:10.1117/12.3057861
摘要

Underwater object detection is an important computer vision task that has been widely used in marine life identification and tracking. However, problems such as low contrast conditions, occlusion condition, unbalanced light condition and small dense objects bring a series of challenges to underwater object detection. Considering these challenges, several methods have been proposed to extract features more efficiently. Attention mechanism has been proven powerful in feature extraction. However, the attention mechanism ignores the internal structure of the captured object, and conventional regular patch division is too coarse. Thus, we apply graph attention mechanisms to irregular patches and propose an Irregular-patch Graph Attention Network (IPGA). Firstly, the superpixel segmentation method is used to segment the image to reduce noise. Secondly, the global graph and local graph are constructed using clustering methods to obtain internal structures. Finally, to handle occlusion and small objects, a distinctive Feature Interaction (FIA) module is proposed to fuse information from global and local graph. To demonstrate the effectiveness of the proposed method, we conduct comprehensive evaluations on four challenging underwater datasets DUO, Brackish, TrashCan and WPBB. Experimental results demonstrate that the proposed IPGA achieves superior performance on three challenging underwater datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
曹祉翔完成签到 ,获得积分20
1秒前
2秒前
陈哈哈发布了新的文献求助10
3秒前
3秒前
小蘑菇应助爬不起来采纳,获得10
3秒前
等待水绿发布了新的文献求助10
4秒前
4秒前
weizhi完成签到,获得积分10
4秒前
别有乾坤发布了新的文献求助30
4秒前
紫气东来应助半凡采纳,获得50
5秒前
青青小筑发布了新的文献求助10
6秒前
JF123_完成签到 ,获得积分10
6秒前
酷波er应助Jonathan采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
Jasper应助飘逸的紫丝采纳,获得10
7秒前
sunglow11完成签到,获得积分0
8秒前
小吴同志发布了新的文献求助10
9秒前
cy发布了新的文献求助10
9秒前
连战完成签到,获得积分10
9秒前
10秒前
求助人员应助hhh采纳,获得30
11秒前
一只小学弱完成签到,获得积分10
12秒前
12秒前
小台完成签到,获得积分10
12秒前
科研通AI6应助杨帅采纳,获得10
15秒前
Calla_ran发布了新的文献求助10
16秒前
勤恳雅莉举报OK不OK求助涉嫌违规
17秒前
valant06完成签到 ,获得积分10
17秒前
YANA完成签到,获得积分10
17秒前
711notfound完成签到,获得积分10
18秒前
aidiresi发布了新的文献求助80
18秒前
爬不起来发布了新的文献求助10
19秒前
小吴同志完成签到,获得积分10
19秒前
19秒前
科研通AI6应助青青小筑采纳,获得10
19秒前
石安安发布了新的文献求助10
20秒前
卢苗苗发布了新的文献求助10
23秒前
CJX完成签到 ,获得积分20
23秒前
25秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5580794
求助须知:如何正确求助?哪些是违规求助? 4665572
关于积分的说明 14756655
捐赠科研通 4607084
什么是DOI,文献DOI怎么找? 2528118
邀请新用户注册赠送积分活动 1497448
关于科研通互助平台的介绍 1466379