材料科学
塞贝克系数
量子隧道
离子
热电效应
电子
凝聚态物理
热电发电机
热电材料
发电机(电路理论)
光电子学
功率(物理)
热力学
量子力学
物理
作者
Qi Qian,Hanlin Cheng,Hang Xie,Yihong Wu,Yuanlai Fang,Qiujian Le,Shizhong Yue,Jianyong Ouyang
标识
DOI:10.1002/aenm.202404522
摘要
Abstract Ionic thermoelectric (TE) materials are promising candidate for efficient heat harvesting mainly because they can have a thermopower higher than the electronic TE materials by 2–3 orders in magnitude. However, they cannot be directly exploited in conventional thermoelectric generators (TEGs) since ions cannot transport across the electrodes into the external circuit, and they cannot be used to harvest heat under steady temperature gradient. Here, a mixed ion/electron thermoelectric generator (MTEG) is reported that can continuously generate electricity under not only temperature fluctuation but also steady temperature gradient. It is consisted of a layer of an ionogel added with reduced graphene oxide (rGO). The ionic liquid is an ionic conductor, while rGO is an electronic conductor. The MTEG can supply a constant output voltage to the external load under steady temperature gradient, and the behavior is similar to that of the conventional TEGs, particularly when the external resistance is relatively high. The thermopower can be more than 7.0 mV K −1 , higher than the Seebeck coefficient of the best electronic TE materials by 1–2 orders in magnitude. The operation mechanism is attributed to the hole tunneling across the rGO sheets and the high thermopower due to the Soret effect of the ions.
科研通智能强力驱动
Strongly Powered by AbleSci AI