Unravelling the knowledge matrix: exploring knowledge-sharing behaviours on market-based platforms using regression tree analysis

树(集合论) 知识管理 回归分析 知识共享 回归 基质(化学分析) 计算机科学 心理学 业务 计量经济学 机器学习 数学 统计 组合数学 材料科学 复合材料
作者
Yingnan Shi,Chao Ma
出处
期刊:Personnel Review [Emerald Publishing Limited]
被引量:1
标识
DOI:10.1108/pr-01-2024-0052
摘要

Purpose This study aims to enhance the effectiveness of knowledge markets and overall knowledge management (KM) practices within organisations. By addressing the challenge of internal knowledge stickiness, it seeks to demonstrate how machine learning and AI approaches, specifically a text-based AI method for personality assessment and regression trees for behavioural analysis, can automate and personalise knowledge market incentivisation mechanisms. Design/methodology/approach The research employs a novel approach by integrating machine learning methodologies to overcome the limitations of traditional statistical methods. A natural language processing (NLP)-based AI tool is used to assess employees’ personalities, and regression tree analysis is applied to predict and categorise behavioural patterns in knowledge-sharing contexts. This approach is designed to capture the complex interplay between individual personality traits and environmental factors, which traditional methods often fail to adequately address. Findings Cognitive style was confirmed as a key predictor of knowledge-sharing, with extrinsic motivators outweighing intrinsic ones in market-based platforms. These findings underscore the significance of diverse combinations of environmental and individual factors in promoting knowledge sharing, offering key insights that can inform the automatic design of personalised interventions for community managers of such platforms. Originality/value This research stands out as it is the first to empirically explore the interaction between the individual and the environment in shaping actual knowledge-sharing behaviours, using advanced methodologies. The increased automation in the process extends the practical contribution of this study, enabling a more efficient, automated assessment process, and thus making critical theoretical and practical advancements in understanding and enhancing knowledge-sharing behaviours.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CHANG完成签到 ,获得积分10
刚刚
D-L@rabbit完成签到 ,获得积分10
3秒前
4秒前
温暖的颜演完成签到 ,获得积分10
4秒前
raiychemj完成签到,获得积分10
10秒前
宇文青寒完成签到,获得积分10
17秒前
南歌子完成签到 ,获得积分10
19秒前
聪慧芷巧完成签到,获得积分20
23秒前
习月阳完成签到,获得积分10
25秒前
辻诺完成签到 ,获得积分10
27秒前
Eason Liu完成签到,获得积分0
29秒前
30秒前
留胡子的丹彤完成签到 ,获得积分10
32秒前
胖胖完成签到 ,获得积分0
32秒前
34秒前
lisa完成签到 ,获得积分10
35秒前
清爽雪碧完成签到 ,获得积分10
36秒前
木又完成签到 ,获得积分10
37秒前
钱仙人完成签到,获得积分10
38秒前
尔信发布了新的文献求助10
40秒前
looklook完成签到 ,获得积分10
40秒前
青檬完成签到 ,获得积分10
44秒前
稳重母鸡完成签到 ,获得积分10
47秒前
YOUNG-M完成签到,获得积分10
47秒前
俊逸的盛男完成签到 ,获得积分10
48秒前
Joy完成签到,获得积分10
53秒前
顾矜应助xiezhenghong采纳,获得10
54秒前
研友_西门孤晴完成签到,获得积分10
55秒前
1分钟前
木樨完成签到,获得积分10
1分钟前
炮仗完成签到 ,获得积分10
1分钟前
mojomars完成签到,获得积分10
1分钟前
Hello应助djbj2022采纳,获得10
1分钟前
尔信完成签到,获得积分10
1分钟前
ding应助那天晚上我竟然采纳,获得10
1分钟前
Wilson完成签到 ,获得积分10
1分钟前
晚街听风完成签到 ,获得积分10
1分钟前
1分钟前
momo完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788421
求助须知:如何正确求助?哪些是违规求助? 3333726
关于积分的说明 10263234
捐赠科研通 3049649
什么是DOI,文献DOI怎么找? 1673644
邀请新用户注册赠送积分活动 802120
科研通“疑难数据库(出版商)”最低求助积分说明 760511