Embed-Search-Align: DNA sequence alignment using Transformer models

计算机科学 DNA测序 DNA 计算生物学 变压器 序列(生物学) 多序列比对 序列比对 软件 算法 人工智能 生物 遗传学 程序设计语言 肽序列 基因 工程类 电压 电气工程
作者
Pavan Holur,Kenneth Enevoldsen,Shreyas Rajesh,Lajoyce Mboning,Thalia Georgiou,Louis‐S. Bouchard,Matteo Pellegrini,Vwani Roychowdhury
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:41 (3) 被引量:3
标识
DOI:10.1093/bioinformatics/btaf041
摘要

Abstract Motivation DNA sequence alignment, an important genomic task, involves assigning short DNA reads to the most probable locations on an extensive reference genome. Conventional methods tackle this challenge in two steps: genome indexing followed by efficient search to locate likely positions for given reads. Building on the success of Large Language Models in encoding text into embeddings, where the distance metric captures semantic similarity, recent efforts have encoded DNA sequences into vectors using Transformers and have shown promising results in tasks involving classification of short DNA sequences. Performance at sequence classification tasks does not, however, guarantee sequence alignment, where it is necessary to conduct a genome-wide search to align every read successfully, a significantly longer-range task by comparison. Results We bridge this gap by developing a “Embed-Search-Align” (ESA) framework, where a novel Reference-Free DNA Embedding (RDE) Transformer model generates vector embeddings of reads and fragments of the reference in a shared vector space; read-fragment distance metric is then used as a surrogate for sequence similarity. ESA introduces: (i) Contrastive loss for self-supervised training of DNA sequence representations, facilitating rich reference-free, sequence-level embeddings, and (ii) a DNA vector store to enable search across fragments on a global scale. RDE is 99% accurate when aligning 250-length reads onto a human reference genome of 3 gigabases (single-haploid), rivaling conventional algorithmic sequence alignment methods such as Bowtie and BWA-Mem. RDE far exceeds the performance of six recent DNA-Transformer model baselines such as Nucleotide Transformer, Hyena-DNA, and shows task transfer across chromosomes and species. Availability and implementation Please see https://anonymous.4open.science/r/dna2vec-7E4E/readme.md.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈皮软糖完成签到 ,获得积分10
2秒前
2秒前
Owen应助无语的代真采纳,获得10
3秒前
cream发布了新的文献求助10
3秒前
6秒前
6秒前
6秒前
7秒前
桐桐应助531采纳,获得30
7秒前
Frank发布了新的文献求助10
7秒前
guojie给guojie的求助进行了留言
10秒前
12秒前
12秒前
NexusExplorer应助Frank采纳,获得10
13秒前
13秒前
14秒前
14秒前
罗曼蒂克完成签到,获得积分10
14秒前
挣大钱完成签到,获得积分10
16秒前
17秒前
17秒前
R18686226306发布了新的文献求助10
17秒前
17秒前
lalalala完成签到,获得积分10
18秒前
18秒前
19秒前
烟花应助芋头采纳,获得10
19秒前
爆米花应助单纯的电灯胆采纳,获得10
20秒前
鲤鱼遥完成签到,获得积分10
21秒前
21秒前
22秒前
23秒前
23秒前
23秒前
徐国发发布了新的文献求助10
24秒前
24秒前
24秒前
24秒前
letter完成签到,获得积分10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736878
求助须知:如何正确求助?哪些是违规求助? 5369127
关于积分的说明 15334294
捐赠科研通 4880593
什么是DOI,文献DOI怎么找? 2622982
邀请新用户注册赠送积分活动 1571829
关于科研通互助平台的介绍 1528648