Assessing and Predicting Geogrid Reduction Factors after Damage Induced by Dropping Recycled Aggregates

级配 土工格栅 土工合成材料 卡车 岩土工程 拆毁 极限抗拉强度 破碎机 还原(数学) 耐久性 装载机 环境科学 工程类 土木工程 结构工程 材料科学 计算机科学 数学 复合材料 钢筋 汽车工程 机械工程 计算机视觉 几何学
作者
Mateus P. Fleury,Gustavo K. Kamakura,Cira Souza Pitombo,André Luiz Cunha,Fernanda Bessa Ferreira,Jefferson Lins da Silva
出处
期刊:Sustainability [MDPI AG]
卷期号:15 (13): 9942-9942 被引量:2
标识
DOI:10.3390/su15139942
摘要

To fulfill the modern concept of sustainable construction, the civil engineering community has shown increased interest in alternative options to replace natural backfills for engineering purposes. Since Recycled Construction and Demolition Waste (RCDW) has proven to be attractive in environmental, economic, and technical aspects, its behavior should be assessed considering its interaction with other construction materials, such as geosynthetics. Bearing in mind that the backfill affects the durability of geosynthetic materials, this study aims to assess the damage caused to geogrids by RCDW dropped by transportation (dump) trucks. Moreover, this study aimed to obtain an equation to predict the reduction factor caused by the backfill drop process. In an experimental facility, six RCDW materials (with different grain size distributions) were dropped (using a backhoe loader) from 1.0 m and 2.0 m heights over three distinct geogrids; the geogrid samples were exhumed and then tested under tensile loading. The results provided a database subjected to machine learning (Artificial Neural Network—ANN) to predict the reduction factor caused by the induced damage. The results demonstrate that the increase in drop height or potential energy cannot be directly associated with the damage. However, the damage increases as the maximum grain size of uniform gradation backfill increases, which is different from the results obtained from the fall of continuous gradation backfill. Moreover, since ANNs do not have any of the traditional constraints that multiple linear regression has, this method is an attractive solution to predict the geosynthetic reduction factors, providing relative errors lower than 8% compared to the experimental investigation reported in the study.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小霍发布了新的文献求助10
刚刚
Doctor_Mill完成签到,获得积分10
刚刚
我爱物理发布了新的文献求助10
刚刚
小马甲应助yga18采纳,获得10
刚刚
1秒前
qt完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
6秒前
无花果应助开放的思菱采纳,获得10
8秒前
wl完成签到,获得积分10
8秒前
杨程羽完成签到 ,获得积分10
9秒前
丘比特应助饱满烨磊采纳,获得10
10秒前
兴奋姒发布了新的文献求助10
10秒前
搜集达人应助过眼云烟采纳,获得10
11秒前
13秒前
暖羊羊Y完成签到 ,获得积分10
13秒前
13秒前
14秒前
14秒前
ceeray23应助冰红茶一大杯采纳,获得10
15秒前
2213sss完成签到,获得积分10
15秒前
Wqian发布了新的文献求助10
16秒前
17秒前
浮浮世世发布了新的文献求助10
17秒前
枯叶灬风发布了新的文献求助30
17秒前
清风与你完成签到,获得积分10
17秒前
我现在感觉很颓完成签到,获得积分10
17秒前
hsh完成签到,获得积分10
18秒前
19秒前
XY完成签到,获得积分10
19秒前
星期一发布了新的文献求助10
20秒前
细心咖啡完成签到,获得积分10
20秒前
遨游的人发布了新的文献求助10
21秒前
21秒前
21秒前
李爱国应助王小聪明采纳,获得10
21秒前
高贵的耳机完成签到,获得积分10
22秒前
爆米花应助车宇采纳,获得10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554277
求助须知:如何正确求助?哪些是违规求助? 4638820
关于积分的说明 14654266
捐赠科研通 4580509
什么是DOI,文献DOI怎么找? 2512379
邀请新用户注册赠送积分活动 1487203
关于科研通互助平台的介绍 1458044