Explainable AI for Bioinformatics: Methods, Tools and Applications

透明度(行为) 计算机科学 人工智能 背景(考古学) 领域(数学分析) 机器学习 个性化 黑匣子 数据科学 可解释性 万维网 数学分析 古生物学 计算机安全 数学 生物
作者
Rezaul Karim,Tanhim Islam,Md Shajalal,Oya Beyan,Christoph Lange,Michael Cochez,Dietrich Rebholz‐Schuhmann,Stefan Decker
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (5) 被引量:2
标识
DOI:10.1093/bib/bbad236
摘要

Abstract Artificial intelligence (AI) systems utilizing deep neural networks and machine learning (ML) algorithms are widely used for solving critical problems in bioinformatics, biomedical informatics and precision medicine. However, complex ML models that are often perceived as opaque and black-box methods make it difficult to understand the reasoning behind their decisions. This lack of transparency can be a challenge for both end-users and decision-makers, as well as AI developers. In sensitive areas such as healthcare, explainability and accountability are not only desirable properties but also legally required for AI systems that can have a significant impact on human lives. Fairness is another growing concern, as algorithmic decisions should not show bias or discrimination towards certain groups or individuals based on sensitive attributes. Explainable AI (XAI) aims to overcome the opaqueness of black-box models and to provide transparency in how AI systems make decisions. Interpretable ML models can explain how they make predictions and identify factors that influence their outcomes. However, the majority of the state-of-the-art interpretable ML methods are domain-agnostic and have evolved from fields such as computer vision, automated reasoning or statistics, making direct application to bioinformatics problems challenging without customization and domain adaptation. In this paper, we discuss the importance of explainability and algorithmic transparency in the context of bioinformatics. We provide an overview of model-specific and model-agnostic interpretable ML methods and tools and outline their potential limitations. We discuss how existing interpretable ML methods can be customized and fit to bioinformatics research problems. Further, through case studies in bioimaging, cancer genomics and text mining, we demonstrate how XAI methods can improve transparency and decision fairness. Our review aims at providing valuable insights and serving as a starting point for researchers wanting to enhance explainability and decision transparency while solving bioinformatics problems. GitHub: https://github.com/rezacsedu/XAI-for-bioinformatics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小炽丹完成签到,获得积分10
刚刚
合欢发布了新的文献求助10
刚刚
优秀如雪发布了新的文献求助10
1秒前
2秒前
2秒前
矢车菊完成签到 ,获得积分10
2秒前
科研通AI2S应助cxq采纳,获得10
4秒前
云上人发布了新的文献求助10
4秒前
5秒前
沙漠水发布了新的文献求助10
6秒前
ss发布了新的文献求助10
6秒前
是YY完成签到 ,获得积分10
6秒前
92年的矿泉水完成签到,获得积分10
7秒前
7秒前
kop发布了新的文献求助50
8秒前
8秒前
现在到未来完成签到,获得积分10
8秒前
万能图书馆应助chf102采纳,获得10
10秒前
10秒前
CIOOICO1发布了新的文献求助10
10秒前
10秒前
11秒前
香蕉觅云应助hs采纳,获得10
11秒前
12秒前
科目三应助Sherry采纳,获得10
12秒前
12秒前
科研通AI5应助姚子悦采纳,获得10
12秒前
wh雨发布了新的文献求助10
12秒前
星辰大海应助霸气秀采纳,获得10
13秒前
bkagyin应助ss采纳,获得10
13秒前
Bebeans发布了新的文献求助20
13秒前
14秒前
meizijiu完成签到,获得积分10
15秒前
IVY完成签到,获得积分10
15秒前
11完成签到,获得积分10
16秒前
17秒前
诚心谷南发布了新的文献求助10
17秒前
咖啡豆发布了新的文献求助20
17秒前
18秒前
18秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842551
求助须知:如何正确求助?哪些是违规求助? 3384645
关于积分的说明 10536396
捐赠科研通 3105179
什么是DOI,文献DOI怎么找? 1710071
邀请新用户注册赠送积分活动 823490
科研通“疑难数据库(出版商)”最低求助积分说明 774110