硅
材料科学
功能(生物学)
无定形固体
电极
电化学
电压
工作(物理)
计算机科学
热力学
光电子学
化学
电气工程
物理
结晶学
物理化学
进化生物学
生物
工程类
作者
Frederik T. Huld,Jan Petter Mæhlen,Caroline Keller,Samson Yuxiu Lai,Obinna Egwu Eleri,Alexey Y. Koposov,Zhixin Yu,Fengliu Lou
出处
期刊:Batteries
[MDPI AG]
日期:2023-04-27
卷期号:9 (5): 251-251
被引量:10
标识
DOI:10.3390/batteries9050251
摘要
The galvanostatic charge–discharge (GCD) behaviour of silicon (Si) is known to depend strongly on morphology, cycling conditions and electrochemical environment. One common method for analysing GCD curves is through differential capacity, but the data processing required necessarily degrades the results. Here we present a method of extracting empirical information from the delithiation step in GCD data for Si at C-rates above equilibrium conditions. We find that the function is able to quickly and accurately determine the best fit to historical half-cell data on amorphous Si nanowires and thin films, and analysis of the results reveals that the function is capable of distinguishing the capacity contributions from the Li3.5Si and Li2Si phases to the total capacity. The method can also pick up small differences in the phase behaviour of the different samples, making it a powerful technique for further analysis of Si data from the literature. The method was also used for predicting the size of the reservoir effect (the apparent amount of Li remaining in the electrode), making it a useful technique for quickly determining voltage slippage and related phenomena. This work is presented as a starting point for more in-depth empirical analysis of Si GCD data.
科研通智能强力驱动
Strongly Powered by AbleSci AI