Rank-in-Rank Loss for Person Re-identification

秩(图论) 排名(信息检索) 分类 分类 可微函数 相似性(几何) 特征(语言学) 计算机科学 人工智能 班级(哲学) 鉴定(生物学) 模式识别(心理学) 数学 算法 图像(数学) 组合数学 数学分析 语言学 哲学 植物 生物 情报检索
作者
Xin Xu,Xin Yuan,Zheng Wang,Kai Zhang,Ruimin Hu
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:18 (2s): 1-21 被引量:7
标识
DOI:10.1145/3532866
摘要

Person re-identification (re-ID) is commonly investigated as a ranking problem. However, the performance of existing re-ID models drops dramatically, when they encounter extreme positive-negative class imbalance (e.g., very small ratio of positive and negative samples) during training. To alleviate this problem, this article designs a rank-in-rank loss to optimize the distribution of feature embeddings. Specifically, we propose a Differentiable Retrieval-Sort Loss (DRSL) to optimize the re-ID model by ranking each positive sample ahead of the negative samples according to the distance and sorting the positive samples according to the angle (e.g., similarity score). The key idea of the proposed DRSL lies in minimizing the distance between samples of the same category along with the angle between them. Considering that the ranking and sorting operations are non-differentiable and non-convex, the DRSL also performs the optimization of automatic derivation and backpropagation. In addition, the analysis of the proposed DRSL is provided to illustrate that the DRSL not only maintains the inter-class distance distribution but also preserves the intra-class similarity structure in terms of angle constraints. Extensive experimental results indicate that the proposed DRSL can improve the performance of the state-of-the-art re-ID models, thus demonstrating its effectiveness and superiority in the re-ID task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
香蕉觅云应助zd200572采纳,获得10
1秒前
街道办事部完成签到,获得积分10
1秒前
善良的沛山完成签到,获得积分10
1秒前
AhaBlues发布了新的文献求助10
1秒前
高高梦山完成签到 ,获得积分10
2秒前
ynchendt发布了新的文献求助10
2秒前
2秒前
123完成签到,获得积分10
3秒前
3秒前
3秒前
硅负极发布了新的文献求助10
3秒前
3秒前
dddd完成签到,获得积分20
4秒前
PePsi完成签到 ,获得积分10
4秒前
Orange应助善良的沛山采纳,获得10
5秒前
含蓄的小熊猫完成签到 ,获得积分10
5秒前
沉默热狗关注了科研通微信公众号
6秒前
6秒前
彩色的奄完成签到,获得积分10
6秒前
nuomici完成签到,获得积分10
7秒前
四夕完成签到 ,获得积分10
7秒前
辛勤月饼完成签到,获得积分20
7秒前
liuhongcan发布了新的文献求助30
7秒前
Planck完成签到,获得积分10
8秒前
8秒前
魁梧的元蝶完成签到 ,获得积分10
9秒前
自觉的凛发布了新的文献求助10
9秒前
王一g完成签到,获得积分10
9秒前
大胆的娩完成签到,获得积分10
9秒前
echo完成签到,获得积分10
9秒前
雾野与晚风完成签到,获得积分10
10秒前
徐狗馨发布了新的文献求助10
10秒前
赵倩发布了新的文献求助10
10秒前
酷酷秀发完成签到,获得积分10
11秒前
11秒前
11秒前
闻元杰完成签到,获得积分10
12秒前
dxm完成签到,获得积分10
12秒前
鹅鹅完成签到 ,获得积分10
13秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Study of enhancing employee engagement at workplace by adopting internet of things 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837840
求助须知:如何正确求助?哪些是违规求助? 3379891
关于积分的说明 10511672
捐赠科研通 3099555
什么是DOI,文献DOI怎么找? 1707133
邀请新用户注册赠送积分活动 821447
科研通“疑难数据库(出版商)”最低求助积分说明 772617