已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Corn variable-rate seeding decision based on gradient boosting decision tree model

播种 梯度升压 决策树 Boosting(机器学习) 产量(工程) 随机森林 特征选择 农业工程 环境科学 计算机科学 数学 机器学习 农学 工程类 材料科学 冶金 生物
作者
Zhaohui Du,Yang Li,Dongxing Zhang,Tao Cui,Xiantao He,Tianpu Xiao,Chunji Xie,Hongsheng Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:198: 107025-107025 被引量:27
标识
DOI:10.1016/j.compag.2022.107025
摘要

Variable-rate seeding (VRS) technology can adjust the seeding rate according to the growth environment of the crop so as to improve crop yield and resource utilization. The information collection of sensor-based VRS is carried out at the same time as the seeding operation, which improves the operation efficiency and reduces the operation cost. Adjusting the seeding rate according to the indicators that characterize soil fertility is the key to sensor-based VRS technology. However, most of the current research on seeding rate decisions is based on delineating farmland management zones, which cannot be applied to sensor-based VRS. In most studies, traditional linear regression was used to establish the relationship among soil indicators, seeding rate, and yield, which did not consider the impact of weather and management factors on yield. Given the above problems, in this study, corn yield prediction model based on gradient boosting decision tree (GBDT) algorithm was established by combining soil organic matter (SOM) data, weather data and management data, and was compared with the model built by random forest (RF) algorithm. Innovative seeding rate decision rules were developed by using the GBDT corn yield prediction model to simulate corn yield responses to a series of SOM contents and seeding rates. The result showed that the GBDT model (R2cv = 0.799) was better than the RF model (R2cv = 0.749). The simulation results of the GBDT model indicated that the yield showed a parabolic form with the increase of seeding rate under the same SOM, the yield increased first and then decreased with the increase of SOM under the same seeding rate, there was an agronomic optimum seeding rate (AOSR) under each SOM and the AOSR increased in a stepped shape with the increase of SOM. The following decision rules were obtained by summarizing the simulation results: when 10 g/kg ≤ SOM ≤ 12 g/kg, seeding rate = 84,900 seeds/ha; when 12 g/kg < SOM ≤ 13 g/kg, 84,900 seeds/ha < seeding rate ≤ 90,600 seeds/ha; when 13 g/kg < SOM ≤ 14 g/kg, 90,600 seeds/ha < seeding rate ≤ 92,110 seeds/ha; when 14 g/kg < SOM ≤ 20 g/kg, 92,110 seeds/ha < seeding rate ≤ 93,000 seeds/ha; when 20 g/kg < SOM ≤ 26 g/kg, 93,000 seeds/ha < seeding rate ≤ 93,880 seeds/ha. The crop yield prediction model is established through a machine-learning algorithm to create a controllable environment for exploring the change of yield with soil attributes and seeding rate, which is a promising method to study sensor-based variable-rate seeding decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
草莓味的榴莲完成签到,获得积分10
刚刚
刚刚
Sym发布了新的文献求助10
刚刚
胡桃夹子发布了新的文献求助10
2秒前
东晓完成签到,获得积分10
2秒前
5秒前
Dr.完成签到 ,获得积分10
10秒前
乔乔那个孩子完成签到,获得积分10
17秒前
迫切完成签到,获得积分10
19秒前
toniki完成签到,获得积分10
19秒前
20秒前
Jerry发布了新的文献求助10
22秒前
24秒前
24秒前
迫切发布了新的文献求助10
24秒前
田様应助坦率听荷采纳,获得10
25秒前
26秒前
wendy发布了新的文献求助10
28秒前
积极盼山完成签到,获得积分10
29秒前
CipherSage应助欣喜亚男采纳,获得10
30秒前
沙鸥完成签到,获得积分10
30秒前
脑洞疼应助科研通管家采纳,获得10
30秒前
林林子发布了新的文献求助10
30秒前
我是老大应助科研通管家采纳,获得10
30秒前
打打应助科研通管家采纳,获得10
30秒前
小宋应助科研通管家采纳,获得20
30秒前
852应助科研通管家采纳,获得30
30秒前
风清扬应助科研通管家采纳,获得30
30秒前
30秒前
Akim应助科研通管家采纳,获得10
30秒前
30秒前
30秒前
二三三完成签到 ,获得积分10
33秒前
36秒前
37秒前
睡不醒的xx完成签到 ,获得积分10
38秒前
呜呼啦呼完成签到,获得积分10
39秒前
可爱的远望完成签到,获得积分20
39秒前
kiyoshi发布了新的文献求助10
40秒前
orange发布了新的文献求助10
42秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Assessing organizational change : A guide to methods, measures, and practices 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3903664
求助须知:如何正确求助?哪些是违规求助? 3448482
关于积分的说明 10853266
捐赠科研通 3173936
什么是DOI,文献DOI怎么找? 1753673
邀请新用户注册赠送积分活动 847826
科研通“疑难数据库(出版商)”最低求助积分说明 790473