Reliable InSAR Phase History Uncertainty Estimates

干涉合成孔径雷达 斑点图案 连贯性(哲学赌博策略) 协方差矩阵 协方差 合成孔径雷达 不确定度分析 测量不确定度 计算机科学 不确定度量化 不确定度归约理论 统计 遥感 算法 数学 地质学 人工智能 社会学 沟通
作者
Simon Zwieback,Franz J. Meyer
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-9 被引量:17
标识
DOI:10.1109/tgrs.2022.3146816
摘要

Deformation estimation from radar interferometric stacks has to confront speckle over decorrelating distributed targets. Inferring the speckle-induced uncertainty in the estimated phase history is challenging. Previously published estimates based on Fisher information (FI) can underestimate the errors by an order of magnitude. Here, we introduce three improvements to mitigate the bias. We: 1) account for uncertainty in the magnitudes of the interferometric covariance matrix elements; 2) penalize the likelihood to reduce the impact of coherence biases on the phase history uncertainty estimates; and 3) constrain the covariance magnitudes to stabilize the estimation. In simulations, these improvements substantially reduced the bias in the uncertainty estimates. Bias reduction was due to an increase in the predicted uncertainty (improvements 1–3) and a decrease in the actual error (improvements 2 and 3). Temporal correlations–crucial for model fitting and testing–were also estimated more accurately. In observations, the underestimation relative to the observed spatial variability was largely eliminated. In contrast to the alternative estimates based on spatial variability, the improved FI uncertainty estimates are applicable to small-scale phenomena such as sinkholes. They can serve as foundation for reliable uncertainty estimates of the deformation derived in subsequent interferometric processing steps, thus bolstering model testing and data fusion.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
謓言完成签到,获得积分10
刚刚
Orange应助笨笨百招采纳,获得10
刚刚
2秒前
威武的皮卡丘完成签到,获得积分10
3秒前
4秒前
6秒前
7秒前
10秒前
从容面包发布了新的文献求助10
11秒前
12秒前
12秒前
ll完成签到,获得积分10
14秒前
ccm应助草莓味的星星采纳,获得10
14秒前
16秒前
会会驳回了852应助
16秒前
17秒前
17秒前
18秒前
漂亮水池完成签到,获得积分10
19秒前
坦率幻灵完成签到,获得积分10
19秒前
千秋完成签到,获得积分10
19秒前
19秒前
量子星尘发布了新的文献求助10
21秒前
liaotao发布了新的文献求助10
22秒前
荒野关注了科研通微信公众号
22秒前
年轻的老人完成签到 ,获得积分10
22秒前
奇点完成签到,获得积分10
23秒前
浮游应助djbj2022采纳,获得10
24秒前
坦率幻灵发布了新的文献求助10
24秒前
可爱的函函应助Miranda采纳,获得30
25秒前
独特的舞仙完成签到,获得积分20
27秒前
29秒前
草莓味的星星完成签到,获得积分10
29秒前
29秒前
Patty完成签到,获得积分10
30秒前
32秒前
32秒前
33秒前
朝朝暮夕完成签到 ,获得积分10
33秒前
Tigher发布了新的文献求助10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638000
求助须知:如何正确求助?哪些是违规求助? 4744481
关于积分的说明 15000910
捐赠科研通 4796182
什么是DOI,文献DOI怎么找? 2562369
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481741