Parameter Identification of Jiles-Atherton Model Based on Levy Whale Optimization Algorithm

布谷鸟搜索 算法 水准点(测量) 粒子群优化 计算机科学 鉴定(生物学) 理论(学习稳定性) 数学优化 数学 机器学习 大地测量学 植物 生物 地理
作者
Zhigang Chen,Yue Yu,Yanxue Wang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 66711-66721 被引量:2
标识
DOI:10.1109/access.2022.3185414
摘要

The Jiles-Atherton model is key to researching the hysteresis loop. The focus of scholars across various countries has always been the parameter identification of the Jiles-Atherton model. This paper on the Levy whale optimization algorithm (LWOA), based on the whale optimization algorithm (WOA), proposes to overcome the disadvantage that WOA tends to involve the local optimum. The recommended algorithm uses the Levy flight strategy instead of the encircling prey policy since the former improves the global search. Therefore, the new algorithm is better at stability and calculation accuracy. To substantiate the efficacy of the proposed algorithm, it is tested against six benchmark functions and compared with the WOA, particle swarm optimization (PSO), grey wolf algorithm (GWO), and shuffled frog leaping algorithm (SFLA). In addition, the proposed algorithm is applied to realize two classical engineering problems, such as the tension/compression spring and welded beam design issues. The experimental findings reveal that the proposed algorithm is highly competitive with metaheuristic optimizers and improves the algorithm’s performance. To address the poor stability of the J-A model parameter identification, an improved calculation method for parameter k and the reduced parameter ranges of the model parameters a and α were combined with LWOA. The proposed algorithm is called C-LWOA, which is compared with LWOA, PSO, GWO, SFLA, and the cuckoo search (CS) based on the data reported in the literature. Moreover, the simulation results demonstrate that the stability and calculation accuracy of the parameter identification by the C-LWOA was significantly strengthened. Equally important, the calculation error was within 0.2%. Finally, the proposed algorithm was subsequently used to fit the actual measurements of the hysteresis loop of permalloy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
HanluMa发布了新的文献求助30
刚刚
feimengxia完成签到 ,获得积分10
刚刚
勤劳雁完成签到,获得积分10
1秒前
时尚的初柔完成签到,获得积分10
1秒前
啾啾完成签到,获得积分10
1秒前
深情秋刀鱼完成签到,获得积分10
1秒前
2秒前
2秒前
慕青应助李大柱采纳,获得10
2秒前
豆子发布了新的文献求助10
3秒前
难过的翎应助蝉一个夏天采纳,获得10
3秒前
哈哈发布了新的文献求助10
4秒前
4秒前
啦啦啦就好完成签到 ,获得积分10
4秒前
4秒前
北斗发布了新的文献求助10
4秒前
rwSSS发布了新的文献求助10
5秒前
张玉建发布了新的文献求助10
5秒前
6秒前
丘比特应助ZIS采纳,获得10
7秒前
ninwa20完成签到,获得积分10
7秒前
aiai完成签到 ,获得积分10
7秒前
倦梦还完成签到,获得积分10
8秒前
只因不只因完成签到,获得积分10
8秒前
8秒前
8秒前
苯基乙胺发布了新的文献求助10
8秒前
笑笑完成签到,获得积分10
8秒前
orixero应助豆子采纳,获得10
9秒前
xinxin完成签到,获得积分10
9秒前
juanjuan发布了新的文献求助10
9秒前
nn发布了新的文献求助10
10秒前
星辰大海应助诚心的砖头采纳,获得10
10秒前
JamesPei应助wlm采纳,获得10
10秒前
谨慎映冬发布了新的文献求助10
11秒前
清风朗月完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
苏子墨完成签到,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4615619
求助须知:如何正确求助?哪些是违规求助? 4019269
关于积分的说明 12441658
捐赠科研通 3702297
什么是DOI,文献DOI怎么找? 2041522
邀请新用户注册赠送积分活动 1074192
科研通“疑难数据库(出版商)”最低求助积分说明 957826