Parameter Identification of Jiles-Atherton Model Based on Levy Whale Optimization Algorithm

布谷鸟搜索 算法 水准点(测量) 粒子群优化 计算机科学 鉴定(生物学) 理论(学习稳定性) 数学优化 数学 机器学习 植物 大地测量学 生物 地理
作者
Zhigang Chen,Yue Yu,Yanxue Wang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 66711-66721 被引量:2
标识
DOI:10.1109/access.2022.3185414
摘要

The Jiles-Atherton model is key to researching the hysteresis loop. The focus of scholars across various countries has always been the parameter identification of the Jiles-Atherton model. This paper on the Levy whale optimization algorithm (LWOA), based on the whale optimization algorithm (WOA), proposes to overcome the disadvantage that WOA tends to involve the local optimum. The recommended algorithm uses the Levy flight strategy instead of the encircling prey policy since the former improves the global search. Therefore, the new algorithm is better at stability and calculation accuracy. To substantiate the efficacy of the proposed algorithm, it is tested against six benchmark functions and compared with the WOA, particle swarm optimization (PSO), grey wolf algorithm (GWO), and shuffled frog leaping algorithm (SFLA). In addition, the proposed algorithm is applied to realize two classical engineering problems, such as the tension/compression spring and welded beam design issues. The experimental findings reveal that the proposed algorithm is highly competitive with metaheuristic optimizers and improves the algorithm’s performance. To address the poor stability of the J-A model parameter identification, an improved calculation method for parameter k and the reduced parameter ranges of the model parameters a and α were combined with LWOA. The proposed algorithm is called C-LWOA, which is compared with LWOA, PSO, GWO, SFLA, and the cuckoo search (CS) based on the data reported in the literature. Moreover, the simulation results demonstrate that the stability and calculation accuracy of the parameter identification by the C-LWOA was significantly strengthened. Equally important, the calculation error was within 0.2%. Finally, the proposed algorithm was subsequently used to fit the actual measurements of the hysteresis loop of permalloy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助tang采纳,获得10
刚刚
1秒前
科研通AI2S应助Ethanyoyo0917采纳,获得10
2秒前
Orange应助sss采纳,获得150
2秒前
99发布了新的文献求助10
3秒前
愉快的隶完成签到,获得积分10
4秒前
Anan完成签到,获得积分10
4秒前
124完成签到 ,获得积分10
6秒前
wsh完成签到 ,获得积分10
6秒前
DQ完成签到,获得积分10
8秒前
iNk应助Rgly采纳,获得20
8秒前
唐妮完成签到,获得积分10
9秒前
果蝇宝宝完成签到,获得积分10
10秒前
dai完成签到,获得积分10
10秒前
10秒前
寻寻觅觅冷冷清清完成签到,获得积分10
10秒前
小朱完成签到,获得积分10
11秒前
13秒前
魁梧的冰菱完成签到,获得积分10
14秒前
年轻火车完成签到,获得积分10
14秒前
ZH完成签到 ,获得积分10
15秒前
17秒前
古今奇观完成签到 ,获得积分10
18秒前
路冰完成签到,获得积分10
18秒前
酷波er应助儒雅的友瑶采纳,获得10
20秒前
小分队发布了新的文献求助10
21秒前
21秒前
21秒前
情怀应助细心蚂蚁采纳,获得10
22秒前
yaoyh_gc完成签到,获得积分10
26秒前
Zik完成签到 ,获得积分10
28秒前
科研通AI5应助feng采纳,获得10
28秒前
Ying完成签到,获得积分10
28秒前
29秒前
30秒前
licheng完成签到,获得积分10
30秒前
儒雅的友瑶完成签到,获得积分10
30秒前
30秒前
Ava应助英勇含烟采纳,获得10
33秒前
斯文败类应助小分队采纳,获得10
33秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671619
求助须知:如何正确求助?哪些是违规求助? 3228325
关于积分的说明 9779523
捐赠科研通 2938636
什么是DOI,文献DOI怎么找? 1610158
邀请新用户注册赠送积分活动 760547
科研通“疑难数据库(出版商)”最低求助积分说明 736093