Towards intelligent and integrated pest management through an <scp>AIoT</scp> ‐based monitoring system

病虫害综合治理 不可用 有害生物分析 蓟马 温室 Trialeurodes公司 农业工程 业务
作者
Dan Jeric Arcega Rustia,Lin-Ya Chiu,Chen-Yi Lu,Ya-Fang Wu,Sheng-Kuan Chen,Jui-Yung Chung,Ju-Chun Hsu,Ta-Te Lin
出处
期刊:Pest Management Science [Wiley]
标识
DOI:10.1002/ps.7048
摘要

Main bottleneck in facilitating integrated pest management (IPM) is the unavailability of reliable and immediate crop damage data. Without sufficient insect pest and plant disease information, farm managers are unable to make proper decisions to prevent crop damage. This work aims to present how an integrated system was able to drive farm managers towards sustainable and data-driven IPM.A system called Intelligent and Integrated Pest and Disease Management (I2 PDM) system was developed. Edge computing devices were developed to automatically detect and recognize major greenhouse insect pests such as thrips (Frankliniella intonsa, Thrips hawaiiensis, and Thrips tabaci), and whiteflies (Bemisia argentifolii and Trialeurodes vaporariorum), to name a few, and measure environmental conditions including temperature, humidity, and light intensity, and send data to a remote server. The system has been installed in greenhouses producing tomatoes and orchids for gathering long-term spatiotemporal insect pest count and environmental data, for as long as 1368 days. The findings demonstrated that the proposed system supported the farm managers in performing IPM-related tasks. Significant yearly reductions in insect pest count as high as 50.7% were observed on the farms.It was concluded that novel and efficient strategies can be achieved by using an intelligent IPM system, opening IPM to potential benefits that cannot be easily realized with a traditional IPM program. This is the first work that reports the development of an intelligent strategic model for IPM based on actual automatically collected long-term data. The work presented herein can help in encouraging farm managers, researchers, experts, and industries to work together in implementing sustainable and data-driven IPM. © 2022 Society of Chemical Industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
yige发布了新的文献求助10
2秒前
3秒前
淡然士晋完成签到,获得积分10
4秒前
暗月皇发布了新的文献求助10
4秒前
糊涂的元珊完成签到 ,获得积分10
4秒前
Mry完成签到,获得积分10
5秒前
哈哈哈哈嘻嘻嘻完成签到 ,获得积分10
8秒前
日出发布了新的文献求助10
8秒前
成诗怡发布了新的文献求助10
8秒前
KXC完成签到,获得积分20
8秒前
huahua完成签到 ,获得积分10
11秒前
田様应助Oasis采纳,获得10
11秒前
阳光完成签到,获得积分10
13秒前
冲冲冲完成签到,获得积分10
13秒前
暖羊羊Y完成签到 ,获得积分10
15秒前
顺其自然_666888完成签到,获得积分10
15秒前
wy1693207859完成签到,获得积分10
16秒前
邓佳鑫Alan应助芷兰丁香采纳,获得10
16秒前
成诗怡完成签到,获得积分10
17秒前
Yu完成签到,获得积分10
20秒前
渣渣凡完成签到,获得积分10
21秒前
22秒前
zhouyan完成签到,获得积分10
25秒前
爱学习完成签到,获得积分10
28秒前
酷波er应助小四喜采纳,获得10
33秒前
嘻嘻完成签到 ,获得积分10
35秒前
40秒前
子春完成签到 ,获得积分10
41秒前
忐忑的黑猫应助amupf采纳,获得10
41秒前
M3L2完成签到,获得积分10
42秒前
Kate发布了新的文献求助10
45秒前
46秒前
舒心丹亦完成签到,获得积分20
46秒前
yahong完成签到 ,获得积分20
47秒前
爆米花应助科研通管家采纳,获得10
47秒前
小马甲应助科研通管家采纳,获得30
47秒前
深情安青应助科研通管家采纳,获得10
48秒前
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781110
求助须知:如何正确求助?哪些是违规求助? 3326526
关于积分的说明 10227602
捐赠科研通 3041675
什么是DOI,文献DOI怎么找? 1669552
邀请新用户注册赠送积分活动 799100
科研通“疑难数据库(出版商)”最低求助积分说明 758734