计算机科学
人工智能
分割
概化理论
任务(项目管理)
一般化
特征(语言学)
机器学习
块(置换群论)
编码(集合论)
元学习(计算机科学)
领域(数学分析)
适应(眼睛)
模式识别(心理学)
数学分析
哲学
物理
经济
光学
集合(抽象数据类型)
管理
程序设计语言
统计
语言学
数学
几何学
作者
Chu Han,Huasheng Yao,Bingchao Zhao,Zhenhui Li,Zhenwei Shi,Lei Wu,Xin Chen,Jinrong Qu,Ke Zhao,Rushi Lan,Changhong Liang,Xipeng Pan,Zaiyi Liu
标识
DOI:10.1016/j.media.2022.102481
摘要
Cells/nuclei deliver massive information of microenvironment. An automatic nuclei segmentation approach can reduce pathologists' workload and allow precise of the microenvironment for biological and clinical researches. Existing deep learning models have achieved outstanding performance under the supervision of a large amount of labeled data. However, when data from the unseen domain comes, we still have to prepare a certain degree of manual annotations for training for each domain. Unfortunately, obtaining histopathological annotations is extremely difficult. It is high expertise-dependent and time-consuming. In this paper, we attempt to build a generalized nuclei segmentation model with less data dependency and more generalizability. To this end, we propose a meta multi-task learning (Meta-MTL) model for nuclei segmentation which requires fewer training samples. A model-agnostic meta-learning is applied as the outer optimization algorithm for the segmentation model. We introduce a contour-aware multi-task learning model as the inner model. A feature fusion and interaction block (FFIB) is proposed to allow feature communication across both tasks. Extensive experiments prove that our proposed Meta-MTL model can improve the model generalization and obtain a comparable performance with state-of-the-art models with fewer training samples. Our model can also perform fast adaptation on the unseen domain with only a few manual annotations. Code is available at https://github.com/ChuHan89/Meta-MTL4NucleiSegmentation.
科研通智能强力驱动
Strongly Powered by AbleSci AI