A novel SSD fault detection method using GRU-based Sparse Auto-Encoder for dimensionality reduction

计算机科学 自编码 降维 故障检测与隔离 编码器 断层(地质) 人工智能 还原(数学) 数据挖掘 模式识别(心理学) 深度学习 几何学 数学 地震学 执行机构 地质学 操作系统
作者
Yufei Wang,Xiaowen Dong,Longxiang Wang,Weiduo Chen,Heng Chen
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:43 (4): 4929-4946 被引量:1
标识
DOI:10.3233/jifs-220590
摘要

In recent years, with the development of flash memory technology, storage systems in large data centers are typically built upon thousands or even millions of solid-state drives (SSDs). Therefore, the failure of SSDs is inevitable. An SSD failure may cause unrecoverable data loss or unavailable system service, resulting in catastrophic results. Active fault detection technologies are able to detect device problems in advance, so it is gaining popularity. Recent trends have turned toward applying AI algorithms based on SSD SMART data for fault detection. However, SMART data of new SSDs contains a large number of features, and the high dimension of data features results in poor accuracy of AI algorithms for fault detection. To tackle the above problems, we improve the structure of traditional Auto-Encoder (AE) based on GRU and propose an SSD fault detection method – GAL based on dimensionality reduction with Gated Recurrent Unit (GRU) sparse autoencoder (GRUAE) by combining the temporal characteristics of SSD SMART data. The proposed method trains the GRUAE model with SSD SMART data firstly, and then adopts the encoder of GRUAE model as the dimensionality reduction tool to reduce the original high-dimensional SSD SMART data, aiming at reducing the influence of noise features in original SSD SAMRT data and highlight the features more relevant to data characteristics to improve the accuracy of fault detection. Finally, LSTM is adopted for fault detection with low-dimensional SSD SMART data. Experimental results on real SSD dataset from Alibaba show that the fault detection accuracy of various AI algorithms can be improved by varying degrees after dimensionality reduction with the proposed method, and GAL performs best among all methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
司空以蕊发布了新的文献求助10
1秒前
朱光辉发布了新的文献求助10
1秒前
wsgdhz发布了新的文献求助10
2秒前
彦希完成签到 ,获得积分10
2秒前
2秒前
3秒前
5秒前
雅光发布了新的文献求助50
5秒前
希望天下0贩的0应助Rjy采纳,获得10
5秒前
赘婿应助Fiona678采纳,获得10
6秒前
6秒前
7秒前
huahuahua发布了新的文献求助30
8秒前
zo完成签到,获得积分10
8秒前
剩饭的狗发布了新的文献求助10
8秒前
852应助书晨采纳,获得10
9秒前
蜜桃奇迹发布了新的文献求助20
10秒前
11秒前
SYLH应助世界末末日采纳,获得10
11秒前
奥利奥完成签到,获得积分10
11秒前
派大兴发布了新的文献求助10
11秒前
jmx发布了新的文献求助10
12秒前
幸福大白发布了新的文献求助10
13秒前
14秒前
suyu完成签到,获得积分10
14秒前
搜集达人应助shengwufenzi采纳,获得10
14秒前
Lucas应助TOKO采纳,获得10
14秒前
14秒前
绵绵球应助高高建辉采纳,获得20
15秒前
奥利奥发布了新的文献求助20
16秒前
段盼兰应助小鱼鱼Fish采纳,获得20
16秒前
Ava应助jiwoong采纳,获得10
16秒前
xiaofeng完成签到,获得积分20
17秒前
华仔应助小白采纳,获得10
17秒前
18秒前
spujo应助yuwenshi采纳,获得10
18秒前
重要手机发布了新的文献求助10
19秒前
20秒前
21秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787714
求助须知:如何正确求助?哪些是违规求助? 3333335
关于积分的说明 10261246
捐赠科研通 3049024
什么是DOI,文献DOI怎么找? 1673399
邀请新用户注册赠送积分活动 801874
科研通“疑难数据库(出版商)”最低求助积分说明 760385