亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

WaferSegClassNet - A light-weight network for classification and segmentation of semiconductor wafer defects

分割 计算机科学 编码器 人工智能 范畴变量 模式识别(心理学) 交叉熵 薄脆饼 嵌入 Sørensen–骰子系数 图像分割 机器学习 工程类 操作系统 电气工程
作者
Subhrajit Nag,Dhruv Makwana,Sai Chandra Teja R,Sparsh Mittal,C. Krishna Mohan
出处
期刊:Computers in Industry [Elsevier BV]
卷期号:142: 103720-103720 被引量:31
标识
DOI:10.1016/j.compind.2022.103720
摘要

As the integration density and design intricacy of semiconductor wafers increase, the magnitude and complexity of defects in them are also on the rise. Since the manual inspection of wafer defects is costly, an automated artificial intelligence (AI) based computer-vision approach is highly desired. The previous works on defect analysis have several limitations, such as low accuracy and the need for separate models for classification and segmentation. For analyzing mixed-type defects, some previous works require separately training one model for each defect type, which is non-scalable. In this paper, we present WaferSegClassNet (WSCN), a novel network based on encoder-decoder architecture. WSCN performs simultaneous classification and segmentation of both single and mixed-type wafer defects. WSCN uses a “shared encoder” for classification, and segmentation, which allows training WSCN end-to-end. We use N-pair contrastive loss to first pretrain the encoder and then use BCE-Dice loss for segmentation, and categorical cross-entropy loss for classification. Use of N-pair contrastive loss helps in better embedding representation in the latent dimension of wafer maps. WSCN has a model size of only 0.51MB and performs only 0.2 M FLOPS. Thus, it is much lighter than other state-of-the-art models. Also, it requires only 150 epochs for convergence, compared to 4000 epochs needed by a previous work. We evaluate our model on the MixedWM38 dataset, which has 38,015 images. WSCN achieves an average classification accuracy of 98.2% and a dice coefficient of 0.9999. We are the first to show segmentation results on the MixedWM38 dataset. The source code can be obtained from https://github.com/ckmvigil/WaferSegClassNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
9秒前
17秒前
Akim应助雷光远采纳,获得10
40秒前
foyefeng完成签到 ,获得积分0
48秒前
52秒前
59秒前
玛琳卡迪马完成签到,获得积分10
1分钟前
英俊的铭应助YJJ采纳,获得10
1分钟前
1分钟前
YJJ发布了新的文献求助10
1分钟前
1分钟前
雷光远发布了新的文献求助10
1分钟前
Orange应助一个小胖子采纳,获得10
2分钟前
无花果应助Chi采纳,获得60
2分钟前
P_Chem完成签到,获得积分10
2分钟前
energyharvester完成签到 ,获得积分10
2分钟前
一帆风顺发布了新的文献求助10
3分钟前
3分钟前
3分钟前
al完成签到 ,获得积分10
3分钟前
汉堡包应助一个小胖子采纳,获得10
3分钟前
3分钟前
3分钟前
肉沫鸭完成签到,获得积分10
4分钟前
4分钟前
Perion完成签到 ,获得积分10
4分钟前
研友_8y2G0L完成签到,获得积分10
4分钟前
Yasong完成签到 ,获得积分10
5分钟前
Krim完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
科研通AI5应助一个小胖子采纳,获得10
5分钟前
萝卜丁完成签到 ,获得积分0
6分钟前
6分钟前
6分钟前
nojego完成签到,获得积分10
6分钟前
田様应助科研通管家采纳,获得10
7分钟前
7分钟前
爆米花应助一个小胖子采纳,获得10
7分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Study of enhancing employee engagement at workplace by adopting internet of things 200
Minimum Bar Spacing as a Function of Bond and Shear Strength 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837505
求助须知:如何正确求助?哪些是违规求助? 3379589
关于积分的说明 10509939
捐赠科研通 3099208
什么是DOI,文献DOI怎么找? 1707000
邀请新用户注册赠送积分活动 821348
科研通“疑难数据库(出版商)”最低求助积分说明 772593