Global Quantification of Glutathione S-Transferases in Human Serum Using LC-MS/MS Coupled with Affinity Enrichment

谷胱甘肽S-转移酶 谷胱甘肽 蛋白质组学 定量蛋白质组学 代谢组学 化学 胰蛋白酶 计算生物学 质谱法 色谱法 生物化学 生物 基因
作者
Yuxing Zhang,Deliang Huang,Ning Lv,Guilan Zhu,Jinghan Peng,Tiansheng Chou,Zhibin Zhu,Ju Wang,Yuanyuan Chen,Xiangdong Fang,Jiuxin Qu,Jun Chen,Siqi Liu
出处
期刊:Journal of Proteome Research [American Chemical Society]
卷期号:21 (5): 1311-1320 被引量:1
标识
DOI:10.1021/acs.jproteome.2c00049
摘要

The members of the glutathione S-transferase (GST) superfamily often exhibit functional overlap and can compensate for each other. Their concentrations in serum are considered as disease biomarkers. A global and quantitative evaluation of serum GSTs is therefore urgent, but there is a lack of efficient approaches due to technological limitations. GSH magnetic beads were examined for their affinity to enrich GSTs in serum, and the enriched GSTs were quantitatively targeted using a Q Exactive HF-X mass spectrometer in parallel reaction monitoring (PRM) mode. To optimize the quantification of GST peptides, sample types, trypsin digestion, and serum loading were carefully assessed; a biosynthetic method was employed to generate isotope-labeled GST peptides, and instrumental parameters were systematically optimized. A total of 134 clinical sera were collected for GST quantification from healthy donors and patients with four liver diseases. Using the new approach, GSTs in healthy sera were profiled: 14 GST peptides were quantified, and the abundance of five GST families was ranked GSTM > GSTP > GSTA > MGST1 > GSTT1, ranging from 0.1 to 4 pmol/L. Furthermore, combining the abundance of multiple GST peptides could effectively distinguish different types of liver diseases. Quantification of serum GSTs through targeted proteomics, therefore, has apparent clinical potential for disease diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
JamesPei应助小白采纳,获得10
3秒前
huagu722发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
5秒前
6秒前
ck完成签到 ,获得积分20
6秒前
8秒前
liuyepiao完成签到,获得积分10
9秒前
EurekaOvo发布了新的文献求助10
9秒前
李爱国应助zhou国兵采纳,获得10
10秒前
YangZhang发布了新的文献求助10
10秒前
11秒前
zwj发布了新的文献求助10
13秒前
思源应助yuanjie采纳,获得10
13秒前
留猪发布了新的文献求助10
13秒前
13秒前
毛毛发布了新的文献求助10
16秒前
Wangjingxuan发布了新的文献求助10
18秒前
qzs完成签到,获得积分10
20秒前
21秒前
赘婿应助SICHEN采纳,获得10
22秒前
Jrssion完成签到,获得积分10
23秒前
23秒前
闫123完成签到,获得积分10
24秒前
喜东东发布了新的文献求助30
27秒前
31秒前
xxs应助科研通管家采纳,获得10
32秒前
32秒前
完美世界应助科研通管家采纳,获得10
32秒前
NexusExplorer应助科研通管家采纳,获得10
32秒前
11完成签到,获得积分10
32秒前
33秒前
科研通AI6.2应助kunpenezy采纳,获得10
34秒前
科目三应助千千沐采纳,获得10
36秒前
所所应助yue采纳,获得10
37秒前
冷傲的如柏完成签到,获得积分10
38秒前
走走发布了新的文献求助10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Key Thinkers in Industrial and Organizational Psychology 500
A positive solution of a nonlinear elliptic equation in $\Bbb R^N$ with $G$-symmetry 200
Eine Fährtenschicht im mittelfränkischen Blasensandstein 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5869551
求助须知:如何正确求助?哪些是违规求助? 6453169
关于积分的说明 15661332
捐赠科研通 4985385
什么是DOI,文献DOI怎么找? 2688390
邀请新用户注册赠送积分活动 1630820
关于科研通互助平台的介绍 1588927