基底膜
细胞生物学
诱导多能干细胞
生物物理学
层粘连蛋白
干细胞
形态发生
材料科学
膜
纳米技术
化学
细胞外基质
生物
生物化学
胚胎干细胞
基因
作者
Elrade Rofaani,Yong He,Juan Peng,Yong Chen
标识
DOI:10.1016/j.actbio.2022.03.022
摘要
Epithelial folding depends on mechanical properties of both epithelial cells and underlying basement membrane (BM). While folding is essential for tissue morphogenesis and functions, it is difficult to recapitulate features of a growing epithelial monolayer for in vitro modeling due to lack of in vivo like BM. Herein, we report a method to overcome this difficulty by culturing on an artificial basement membrane (ABM) the primordial lung progenitors (PLPs) from human induced pluripotent stem cells (hiPSCs). The ABM was achieved by self-assembling collagen IV and laminin, the two principal natural BM proteins, in the pores of a monolayer of crosslinked gelatin nanofibers deposited on a honeycomb micro-frame. The hiPSC-PLPs were seeded on the ABM for alveolar differentiation under submerged and air-liquid interface culture conditions. As results, the forces generated by the growing epithelial monolayer led to a geometry-dependent folding. Analysis of strain distribution in a clamped membrane provided instrumental insights into some of the observed phenomena. Moreover, the forces generated by the growing epithelial layer led to a high-level expression of surfactant protein C and a high percentage of aquaporin 5 positive cells compared with the results obtained with a nanofiber-covered bulk substrate. Thus, this work demonstrated the importance of recapitulating natural BM for advanced epithelial modeling. STATEMENT OF SIGNIFICANCE: The effort to develop in vitro epithelial models has not been entirely successful to date, due to lack of in vivo like basement membrane (BM). This lack has been overcome by using a microfabricated dense thin and pliable sheet like structure made of natural BM proteins. With such an artificial BM, alveolar epithelial deformation and folding could be studied and date could be correlated to numerical analyses of a plate theory. This method is simple and effective, enabling further developments in epithelial tissue modeling.
科研通智能强力驱动
Strongly Powered by AbleSci AI