A Novel Multistage Transfer Learning for Ultrasound Breast Cancer Image Classification

学习迁移 计算机科学 人工智能 乳腺超声检查 经济短缺 机器学习 任务(项目管理) 深度学习 模式识别(心理学) 上下文图像分类 乳腺癌 乳房成像 图像(数学) 乳腺摄影术 癌症 医学 语言学 哲学 管理 政府(语言学) 内科学 经济
作者
Gelan Ayana,Jinhyung Park,Jin-Woo Jeong,Se‐woon Choe
出处
期刊:Diagnostics [Multidisciplinary Digital Publishing Institute]
卷期号:12 (1): 135-135 被引量:77
标识
DOI:10.3390/diagnostics12010135
摘要

Breast cancer diagnosis is one of the many areas that has taken advantage of artificial intelligence to achieve better performance, despite the fact that the availability of a large medical image dataset remains a challenge. Transfer learning (TL) is a phenomenon that enables deep learning algorithms to overcome the issue of shortage of training data in constructing an efficient model by transferring knowledge from a given source task to a target task. However, in most cases, ImageNet (natural images) pre-trained models that do not include medical images, are utilized for transfer learning to medical images. Considering the utilization of microscopic cancer cell line images that can be acquired in large amount, we argue that learning from both natural and medical datasets improves performance in ultrasound breast cancer image classification. The proposed multistage transfer learning (MSTL) algorithm was implemented using three pre-trained models: EfficientNetB2, InceptionV3, and ResNet50 with three optimizers: Adam, Adagrad, and stochastic gradient de-scent (SGD). Dataset sizes of 20,400 cancer cell images, 200 ultrasound images from Mendeley and 400 ultrasound images from the MT-Small-Dataset were used. ResNet50-Adagrad-based MSTL achieved a test accuracy of 99 ± 0.612% on the Mendeley dataset and 98.7 ± 1.1% on the MT-Small-Dataset, averaging over 5-fold cross validation. A p-value of 0.01191 was achieved when comparing MSTL against ImageNet based TL for the Mendeley dataset. The result is a significant improvement in the performance of artificial intelligence methods for ultrasound breast cancer classification compared to state-of-the-art methods and could remarkably improve the early diagnosis of breast cancer in young women.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
bxl完成签到,获得积分10
刚刚
1秒前
DuanYuanni完成签到,获得积分10
1秒前
英俊的铭应助香蕉子骞采纳,获得10
3秒前
老北京完成签到,获得积分10
3秒前
mk发布了新的文献求助10
5秒前
夢loey发布了新的文献求助10
5秒前
独特觅儿完成签到,获得积分10
7秒前
perovskite完成签到,获得积分10
7秒前
认真的adai发布了新的文献求助30
7秒前
Gauss完成签到,获得积分0
9秒前
qqqq发布了新的文献求助10
10秒前
mk完成签到,获得积分10
10秒前
聪慧的松鼠完成签到,获得积分10
11秒前
11秒前
Auston_zhong应助TaoJ采纳,获得10
15秒前
HEIKU应助白猹采纳,获得10
15秒前
戴_1233发布了新的文献求助10
16秒前
香蕉子骞发布了新的文献求助10
16秒前
隐形的傲易完成签到 ,获得积分10
17秒前
Akim应助TORCH采纳,获得30
18秒前
通通通发布了新的文献求助10
18秒前
Sky完成签到,获得积分10
18秒前
Zoe完成签到,获得积分10
20秒前
小透明发布了新的文献求助30
21秒前
qqqq完成签到,获得积分10
22秒前
阳佟半仙完成签到,获得积分10
24秒前
冰魂应助通通通采纳,获得10
26秒前
Alex发布了新的文献求助10
26秒前
27秒前
28秒前
甜美三娘完成签到,获得积分10
28秒前
wander完成签到 ,获得积分10
30秒前
30秒前
正直夜梅完成签到 ,获得积分10
35秒前
37秒前
奥特曼发布了新的文献求助40
38秒前
冰魂应助安澜采纳,获得20
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777834
求助须知:如何正确求助?哪些是违规求助? 3323349
关于积分的说明 10214106
捐赠科研通 3038590
什么是DOI,文献DOI怎么找? 1667553
邀请新用户注册赠送积分活动 798161
科研通“疑难数据库(出版商)”最低求助积分说明 758290