Multi-Scale and Multi-Branch Transformer Network for Remaining Useful Life Prediction in Ion Mill Etching Process

变压器 人工神经网络 人工智能 计算机科学 数据挖掘 时间戳 特征提取 过程(计算) 机器学习 工程类 实时计算 电压 电气工程 操作系统
作者
Zengwei Yuan,Rui Wang
出处
期刊:IEEE Transactions on Semiconductor Manufacturing [IEEE Computer Society]
卷期号:37 (1): 67-75 被引量:1
标识
DOI:10.1109/tsm.2023.3324057
摘要

Accurate prediction of the remaining useful life (RUL) of an ion mill is vital for optimizing the overall performance of the ion mill etching (IME) process. However, due to the uneven distribution of important information, and the poorly understood failure mechanisms, fault prognosis in this process presents significant challenges. Deep neural networks have shown promising results for extracting, without domain knowledge, relevant features from condition monitoring data. This study proposes a multi-scale and multi-branch Transformer network based on the vanilla Transformer to predict the RUL of ion mills. To extract features on various scales, multi-scale feature extraction first generates receptive fields of various sizes, which are then integrated to obtain feature representations. The multi-branch Transformer uses the parallel attention mechanism and long short-term memory (LSTM) to capture both the adjacent location information and the crucial information of a given timestamp. Handcrafted features are also incorporated as additional input to enhance the prediction accuracy of the model. The proposed model is evaluated on a dataset from a semiconductor IME process. The experimental results demonstrate that the proposed model outperforms other deep neural network and further highlight the practical feasibility of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Jasper应助笑点低紊采纳,获得10
1秒前
凉拌红烧肉完成签到,获得积分10
2秒前
嘻嘻尼88完成签到 ,获得积分10
2秒前
3秒前
3秒前
wlx关注了科研通微信公众号
3秒前
Skuld发布了新的文献求助10
4秒前
5秒前
czq完成签到 ,获得积分10
5秒前
李健应助kenhahahaha采纳,获得10
5秒前
星辰大海应助Beyond095采纳,获得10
5秒前
乐乐应助魏猛采纳,获得10
5秒前
纯情的天奇完成签到,获得积分10
6秒前
Wayi发布了新的文献求助10
6秒前
Rencal完成签到 ,获得积分10
6秒前
echo发布了新的文献求助10
7秒前
7秒前
沉默的画笔完成签到,获得积分10
7秒前
moai完成签到,获得积分10
7秒前
7秒前
1234567890发布了新的文献求助10
8秒前
充电宝应助ruiheng采纳,获得10
8秒前
TTT0530发布了新的文献求助10
8秒前
Yu发布了新的文献求助10
8秒前
xiaxiao应助oucedv采纳,获得80
9秒前
10秒前
10秒前
11秒前
善学以致用应助wusuowei采纳,获得10
11秒前
11秒前
heolmes完成签到,获得积分10
12秒前
12秒前
婷婷完成签到,获得积分10
12秒前
Jorna完成签到,获得积分10
12秒前
晚霞不晚发布了新的文献求助10
13秒前
隐形的乐枫完成签到,获得积分10
13秒前
14秒前
toda_erica完成签到,获得积分10
15秒前
15秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Treatise on Ocular Drug Delivery 200
studies in large plastic flow and fructure 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834697
求助须知:如何正确求助?哪些是违规求助? 3377202
关于积分的说明 10497023
捐赠科研通 3096605
什么是DOI,文献DOI怎么找? 1705084
邀请新用户注册赠送积分活动 820451
科研通“疑难数据库(出版商)”最低求助积分说明 772054