Expanding from unilateral to bilateral: A robust deep learning-based approach for predicting radiographic osteoarthritis progression

骨关节炎 医学 射线照相术 稳健性(进化) 物理疗法 放射科 病理 生物化学 化学 替代医学 基因
作者
Rui Yin,Hao Chen,Tianqi Tao,Kaibin Zhang,Guangxu Yang,Fajian Shi,Yiqiu Jiang,Jianchao Gui
出处
期刊:Osteoarthritis and Cartilage [Elsevier BV]
卷期号:32 (3): 338-347 被引量:6
标识
DOI:10.1016/j.joca.2023.11.022
摘要

To develop and validate a deep learning (DL) model for predicting osteoarthritis (OA) progression based on bilateral knee joint views.In this retrospective study, knee joints from bilateral posteroanterior knee radiographs of participants in the Osteoarthritis Initiative were analyzed. At baseline, participants were divided into testing set 1 and development set according to the different enrolled sites. The development set was further divided into a training set and a validation set in an 8:2 ratio for model development. At 48-month follow-up, eligible patients were formed testing set 2. The Bilateral Knee Neural Network (BikNet) was developed using bilateral views, with the knee to be predicted as the main view and the contralateral knee as the auxiliary view. DenseNet and ResNext were also trained and compared as the unilateral model. Two reader tests were conducted to evaluate the model's value in predicting incident OA.Totally 3583 participants were evaluated. The BikNet we proposed outperformed ResNext and DenseNet (all area under the curve [AUC] < 0.71, P < 0.001) with AUC values of 0.761 and 0.745 in testing sets 1 and 2, respectively. With assistance of the BikNet increased clinicians' sensitivity (from 28.1-63.2% to 42.1-68.4%) and specificity (from 57.4-83.4% to 64.1-87.5%) of incident OA prediction and improved inter-observer reliability.The DL model, constructed based on bilateral knee views, holds promise for enhancing the assessment of OA and demonstrates greater robustness during subsequent follow-up evaluations as compared with unilateral models. BikNet represents a potential tool or imaging biomarker for predicting OA progression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助杨子怡采纳,获得10
3秒前
哆啦的空间站完成签到,获得积分0
3秒前
DK发布了新的文献求助10
4秒前
4秒前
5秒前
Da You完成签到 ,获得积分10
6秒前
清脆剑封完成签到,获得积分10
6秒前
吟风听且gnis完成签到,获得积分10
6秒前
6秒前
liherong完成签到,获得积分10
8秒前
9秒前
可爱的函函应助WWD采纳,获得10
10秒前
10秒前
迹录发布了新的文献求助10
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
小羊同学发布了新的文献求助10
12秒前
xu1227应助libra采纳,获得30
13秒前
16秒前
Lucas应助acs924采纳,获得10
16秒前
17秒前
大方元风应助文件撤销了驳回
18秒前
韶安萱发布了新的文献求助10
19秒前
香菜张发布了新的文献求助10
19秒前
冷月fan完成签到,获得积分10
22秒前
科研通AI5应助义气芷荷采纳,获得10
22秒前
领导范儿应助五原日落采纳,获得10
22秒前
23秒前
FashionBoy应助老板娘采纳,获得10
23秒前
波bo发布了新的文献求助10
25秒前
个性惜蕊完成签到,获得积分10
27秒前
量子星尘发布了新的文献求助50
27秒前
vv发布了新的文献求助10
27秒前
莲蓉完成签到,获得积分10
27秒前
科研通AI6应助tt采纳,获得10
29秒前
shineedou发布了新的文献求助10
30秒前
不可以虫鸣吗我是大聪明完成签到 ,获得积分10
30秒前
大个应助小羊同学采纳,获得10
31秒前
31秒前
科研通AI6应助浮珘采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Irregular Migration in Southeast Asia: Contemporary Barriers to Regularization and Healthcare 2000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5056696
求助须知:如何正确求助?哪些是违规求助? 4282202
关于积分的说明 13345136
捐赠科研通 4099164
什么是DOI,文献DOI怎么找? 2243977
邀请新用户注册赠送积分活动 1250130
关于科研通互助平台的介绍 1180546