Multisource Domain Generalization Two-Branch Network for Hyperspectral Image Cross-Domain Classification

判别式 计算机科学 人工智能 分类器(UML) 模式识别(心理学) 高光谱成像 一般化 上下文图像分类 特征提取 领域(数学分析) 图像(数学) 数学 数学分析
作者
Yunxiao Qi,Junping Zhang,Dongyang Liu,Ye Zhang
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:21: 1-5 被引量:5
标识
DOI:10.1109/lgrs.2024.3356567
摘要

In practical applications, due to the high cost and difficulty of hyperspectral image (HSI) annotation, labels for the target domain (TD) may be either unavailable or insufficient in quantity. To address this issue, we propose a multi-source domain generalization two-branch network (MDGTnet) and train the model only using source domain (SD) HSIs with contrastive learning to classify an unknown TD image. MDGTnet consists of a classifier and two branches, which are intra-domain uniqueness extraction branch (intra-DUEB) and inter-domain commonality extraction branch (inter-DCEB). The intra-DUEB is responsible for mining internal attributes of each SD, which can be seen as imaging environmental characteristics. And the inter-DCEB is applied to extract generic features among different SDs. The features extracted by two branches are fused at different levels respectively to remove the influence of different imaging environments for discriminative class features. We have conducted extensive experiments on four public HSI datasets. The results show that the proposed method outperforms state-of-the-art methods. It can learn robust models and extract highly discriminative features, leading to excellent performance in HSI cross-domain classification. Especially on the Pavia Center dataset, the overall accuracy (OA) is 2.47% higher and kappa coefficient is 2.92% higher than the best results of the other methods. The code will be released soon on the site of https://github.com/Cherrieqi/MDGTnet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
2秒前
2秒前
鲤鱼宛丝完成签到,获得积分10
2秒前
NIDADI发布了新的文献求助10
2秒前
sweat发布了新的文献求助10
3秒前
3秒前
科研通AI5应助你好采纳,获得10
3秒前
奥里给发布了新的文献求助10
4秒前
笑的得美发布了新的文献求助10
4秒前
乐观的大叔完成签到,获得积分10
5秒前
5秒前
chen.完成签到,获得积分10
6秒前
爱果果完成签到 ,获得积分10
6秒前
SHY完成签到,获得积分10
6秒前
远志发布了新的文献求助10
6秒前
哲哩个贤发布了新的文献求助10
6秒前
6秒前
7秒前
归尘发布了新的文献求助10
7秒前
Hao完成签到,获得积分10
7秒前
sea发布了新的文献求助10
8秒前
eason应助YF采纳,获得10
8秒前
可爱的函函应助叫滚滚采纳,获得10
8秒前
疯狂的麦咭完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
11秒前
zzzq完成签到,获得积分10
11秒前
11秒前
橙子完成签到,获得积分10
12秒前
CQD5201314完成签到,获得积分10
12秒前
ning完成签到,获得积分10
12秒前
Finley完成签到,获得积分10
13秒前
负责乐安发布了新的文献求助10
13秒前
追寻电脑完成签到,获得积分20
13秒前
Accepted应助NIDADI采纳,获得10
13秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
System of systems: When services and products become indistinguishable 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3813277
求助须知:如何正确求助?哪些是违规求助? 3357756
关于积分的说明 10388193
捐赠科研通 3074954
什么是DOI,文献DOI怎么找? 1689097
邀请新用户注册赠送积分活动 812548
科研通“疑难数据库(出版商)”最低求助积分说明 767178