An enhanced lithium-ion battery state-of-charge estimation method using long short-term memory with an adaptive state update filter incorporating battery parameters

计算机科学 荷电状态 电池(电) 锂离子电池 电压 均方误差 卡尔曼滤波器 控制理论(社会学) 算法 电气工程 人工智能 功率(物理) 物理 控制(管理) 量子力学 统计 数学 工程类
作者
Paul Takyi‐Aninakwa,Shunli Wang,Guangchen Liu,Alhamdu Nuhu Bage,Faisal Masahudu,Josep M. Guerrero
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:132: 107946-107946 被引量:22
标识
DOI:10.1016/j.engappai.2024.107946
摘要

The advancements in deep learning strategies offer a promising solution for accurate state-of-charge (SOC) estimation, which serves as a foundation for ensuring the reliable and safe operation of lithium-ion batteries. However, the erratic dynamics and ignorance of the battery state compromise the performance of these methods. Therefore, in this paper, a novel method that incorporates battery domain knowledge sequences is proposed for SOC estimation. First, the current and voltage sequences are decoupled into an adaptive multi-timescale identification strategy (AMIS) with frequency feature decomposition to identify the dynamic battery parameters of a lithium iron phosphate battery. Second, the current and voltage are augmented with the identified dynamic parameters by the AMIS and used as inputs into a multi-layered long short-term memory (LSTM) network, as ALSTM. Finally, to mitigate the negative effect of temperature uncertainties, an adaptive squared-gain unscented Kalman filter (ASGUKF) is proposed to eliminate noise and optimize the final SOC by ignoring the high time dependence of the battery system. The results show that the proposed ALSTM-ASGUKF method is effective and has an optimal mean absolute error and root mean square error of 0.0806% and 0.0986%, respectively, even at low temperatures using two batteries, with only a slight increase in computational cost. Furthermore, its validations and applications at various temperatures demonstrate its effectiveness and the potential of battery domain knowledge to improve the SOC performance of lithium-ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
执玉发布了新的文献求助10
刚刚
煲煲煲仔饭应助胸大无肌采纳,获得10
刚刚
桔梗发布了新的文献求助10
刚刚
刚刚
dll完成签到 ,获得积分10
刚刚
1秒前
za==完成签到 ,获得积分10
1秒前
pangolin发布了新的文献求助10
1秒前
星辰大海发布了新的文献求助10
1秒前
2秒前
英姑应助科研通管家采纳,获得10
2秒前
欣喜踏歌完成签到,获得积分10
2秒前
慕青应助科研通管家采纳,获得10
3秒前
SYLH应助科研通管家采纳,获得10
3秒前
失眠醉易应助科研通管家采纳,获得20
3秒前
SYLH应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
SYLH应助科研通管家采纳,获得10
3秒前
sdl发布了新的文献求助10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
4秒前
冰魂应助科研通管家采纳,获得30
4秒前
传奇3应助科研通管家采纳,获得30
4秒前
田様应助科研通管家采纳,获得30
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
冰魂应助科研通管家采纳,获得20
4秒前
完美世界应助科研通管家采纳,获得30
5秒前
5秒前
失眠醉易应助科研通管家采纳,获得20
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
Hello应助悦耳一江采纳,获得10
6秒前
香蕉觅云应助222采纳,获得10
6秒前
无语的雨柏关注了科研通微信公众号
6秒前
7秒前
lxlcx应助感性的芹菜采纳,获得20
7秒前
过氧化氢发布了新的文献求助10
8秒前
科研通AI5应助守着她可好采纳,获得10
8秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838822
求助须知:如何正确求助?哪些是违规求助? 3381252
关于积分的说明 10517468
捐赠科研通 3100694
什么是DOI,文献DOI怎么找? 1707708
邀请新用户注册赠送积分活动 821857
科研通“疑难数据库(出版商)”最低求助积分说明 773033