Metaphor analysis on pre-service early childhood teachers’ conception of AI (Artificial Intelligence) education for young children

隐喻 心理学 服务(商务) 数学教育 发展心理学 教育学 语言学 哲学 经济 经济
作者
Eun Mee Lim
出处
期刊:Thinking Skills and Creativity [Elsevier BV]
卷期号:51: 101455-101455 被引量:8
标识
DOI:10.1016/j.tsc.2023.101455
摘要

This study explored PEC teacher' (pre-service early childhood teachers') conception of AI (Artificial Intelligence) education for young children by using metaphor analysis. Through exploring the conceptual metaphors of AI education for young children with 137 undergraduate students majoring in ECE (early childhood education) at I University in the central part of the United States, this present study tried to figure out the educationally meaningful direction of AI education for young children. The surveys were composed with open questions to find out PEC teachers' metaphor of AI education for young children and they were distributed to research subjects. Collected data were named, classified, categorised, and finally, 7 categories out of 137 metaphors were analysed through the step of confirming. PEC teachers in this study had positive metaphorical concepts such as 'possibility of play and experience'', 'future essentials', 'innovation and change', 'convenience', 'assistant teacher', and negative metaphorical concepts such as 'double-sided meaning', 'Complexity' of AI education for young children. PEC teachers' beliefs about teaching-and-learning theory and methods related to AI education in ECE settings can be an important indicator of what thoughts and attitudes teachers will have when they implement the AI-related curriculum. Therefore, since PEC teachers have direct responsibility of planning and implementing AI education at ECE institutions, their conception of AI education in ECE would provide an important insight for shaping AI education for young children in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bofu发布了新的文献求助10
刚刚
Foxjker完成签到 ,获得积分10
2秒前
yifan21完成签到,获得积分10
4秒前
搜集达人应助书一卷采纳,获得20
5秒前
大模型应助zw采纳,获得10
6秒前
bofu发布了新的文献求助10
11秒前
11秒前
FashionBoy应助斯文的傲珊采纳,获得10
12秒前
xxx发布了新的文献求助10
13秒前
Lindsay发布了新的文献求助10
15秒前
zw发布了新的文献求助10
16秒前
shezhinicheng发布了新的文献求助10
17秒前
bofu发布了新的文献求助10
17秒前
ylky完成签到 ,获得积分10
20秒前
21秒前
23秒前
bofu发布了新的文献求助10
24秒前
24秒前
保持理智完成签到,获得积分10
28秒前
zw完成签到,获得积分10
29秒前
29秒前
情怀应助Nora采纳,获得10
30秒前
31秒前
shezhinicheng完成签到,获得积分10
32秒前
小蘑菇应助心神依然采纳,获得10
32秒前
小二郎应助wsw采纳,获得10
33秒前
35秒前
36秒前
魔幻沛菡完成签到 ,获得积分10
37秒前
顺利的奇异果完成签到,获得积分10
38秒前
39秒前
shinysparrow应助灵竹采纳,获得80
39秒前
背后归尘完成签到,获得积分10
40秒前
41秒前
Mry完成签到,获得积分10
44秒前
46秒前
46秒前
Muhammad发布了新的文献求助10
46秒前
慈祥的冰淇淋完成签到,获得积分10
47秒前
47秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Fatigue of Materials and Structures 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831561
求助须知:如何正确求助?哪些是违规求助? 3373738
关于积分的说明 10481304
捐赠科研通 3093686
什么是DOI,文献DOI怎么找? 1702949
邀请新用户注册赠送积分活动 819237
科研通“疑难数据库(出版商)”最低求助积分说明 771307