已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Novel NICU Sleep State Stratification: Multiperspective Features, Adaptive Feature Selection and Ensemble Model

特征选择 人工智能 计算机科学 选择(遗传算法) 特征(语言学) 集合预报 机器学习 集成学习 模式识别(心理学) 睡眠(系统调用) 哲学 语言学 操作系统
作者
Muhammad Irfan,Abdülhamit Subaşı,Zhenning Tang,Laishuan Wang,Yan Xu,Chen Chen,Tomi Westerlund,Wei Chen
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tbme.2025.3549584
摘要

The examination of sleep patterns in newborns, particularly premature infants, is crucial for understanding neonatal development. This study presents an automated multi-sleep state classification approach for infants in neonatal intensive care units (NICU) using multiperspective feature extraction methodologies and machine learning to assess their neurological and physical development. The datasets for this study were collected from Children's Hospital Fudan University, Shanghai and consist of electroencephalography (EEG) recordings from two datasets, one comprising 64 neonates and the other 19 neonates. The proposed study involves six major phases: data collection, data annotation, preprocessing, multi-perspective feature extraction, adaptive feature selection, and classification. During the preprocessing phase, noise reduction is achieved using the multi-scale principal component analysis (MSPCA) method. From each epoch of eight EEG channels, a diverse ensemble of 1,976 features is extracted. This extraction employs a combination of stationary wavelet transform (SWT), flexible analytical wavelet transform (FAWT), spectral features based on α, β, θ, and δ brain waves, and temporal features refined through adaptive feature algorithm. In terms of performance, the proposed approach demonstrates significant improvements over existing studies. Using a single EEG channel, the model achieves accuracy of 81.45% and a Kappa score of 71.75%. With four channels, these metrics increase to 83.71% accuracy and a 74.04% Kappa score. Furthermore, utilizing all eight channels, the mean accuracy reaches to 85.62%, and the Kappa score rises to 76.30%. To evaluate the model's effectiveness, a leave-one-subject-out cross-validation method is employed. This thorough analysis validates the reliability of the classification approach. This makes it a promising method for monitoring and assessing sleep patterns in neonates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hh发布了新的文献求助10
刚刚
SciGPT应助kelexh采纳,获得10
1秒前
1秒前
mingjie完成签到,获得积分10
2秒前
科研通AI2S应助健壮的紫菱采纳,获得10
3秒前
3秒前
4秒前
昔年若许完成签到,获得积分10
6秒前
小马甲应助JohanXu采纳,获得10
6秒前
以戈完成签到,获得积分10
6秒前
6秒前
lulu发布了新的文献求助10
7秒前
7秒前
就看最后一篇完成签到 ,获得积分10
7秒前
爱吃香菜完成签到 ,获得积分10
11秒前
YK完成签到,获得积分10
12秒前
kelexh发布了新的文献求助10
13秒前
小文子完成签到 ,获得积分10
13秒前
迷你的蓝完成签到 ,获得积分10
15秒前
今后应助幻影采纳,获得10
16秒前
摇滚谬中庸完成签到 ,获得积分10
18秒前
18秒前
77完成签到 ,获得积分10
20秒前
DD完成签到 ,获得积分10
20秒前
淡定的健柏完成签到 ,获得积分10
20秒前
Wein完成签到,获得积分10
20秒前
围城完成签到 ,获得积分10
21秒前
Setlla完成签到 ,获得积分10
22秒前
Cyan完成签到,获得积分10
22秒前
22秒前
幸福立果完成签到 ,获得积分10
23秒前
我要发财发布了新的文献求助10
23秒前
SPLjoker完成签到 ,获得积分10
24秒前
Akim应助胡质斌采纳,获得10
25秒前
小匹夫完成签到,获得积分10
26秒前
Jyy77完成签到 ,获得积分10
27秒前
捉迷藏完成签到,获得积分10
28秒前
Churchill87426完成签到,获得积分10
29秒前
古铜完成签到 ,获得积分10
30秒前
31秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845393
求助须知:如何正确求助?哪些是违规求助? 3387685
关于积分的说明 10550285
捐赠科研通 3108385
什么是DOI,文献DOI怎么找? 1712551
邀请新用户注册赠送积分活动 824474
科研通“疑难数据库(出版商)”最低求助积分说明 774824